Computing the resolvent of composite operators
-
Abdellatif Moudafi
abdellatif.moudafi@lsis.org
Downloads
DOI:
https://doi.org/10.4067/S0719-06462014000300007Abstract
Based in a very recent paper by Micchelli et al. [8], we present an algorithmic approach for computing the resolvent of composite operators: the composition of a monotone operator and a continuous linear mapping. The proposed algorithm can be used, for example, for solving problems arising in image processing and traffic equilibrium. Fur- thermore, our algorithm gives an alternative to Dykstra-like method for evaluating the resolvent of the sum of two maximal monotone operators.
Keywords
Similar Articles
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Yuqing Chen, Donal O‘Regan, Ravi P. Agarwal, Degree theory for the sum of VMO maps and maximal monotone maps , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Juan D. Cardona-Gutierrez, Julio C. Ramos-Fernández, Harold Vacca-González, Compactness of the difference of weighted composition operators between weighted \(l^p\) spaces , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Ram U. Verma, Linear convergence analysis for general proximal point algorithms involving (H, η) − monotonicity frameworks , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Nguyen Buong, Convergence rates in regularization for ill-posed variational inequalities , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Claus Bauer, A new solution algorithm for skip-free processes to the left , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.