Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
-
Saroj Panigrahi
panigrahi2008@gmail.com
-
Sandip Rout
sandiprout7@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2403.0413Abstract
In this paper, we are concerned with the existence of positive solution of the following semipositone boundary value problem on time scales:
\begin{align*} (\psi(t)y^\Delta (t))^\nabla + \lambda_1 g(t, \,y(t)) + \lambda_2 h(t,\,y(t)) = 0, \,t \in [\rho(c), \,\sigma(d)]_\mathbb{T}, \end{align*}
with mixed boundary conditions
\begin{align*} \alpha y(\rho(c))-\beta \psi(\rho(c)) y^\Delta(\rho(c))=0,\\ \gamma y(\sigma(d))+\delta \psi(d) y^\Delta(d)=0, \end{align*}
where \(\psi:C[\rho(c),\, \sigma(d)]_\mathbb{T}\), \(\psi(t)>0\) for all \(t \in [\rho(c),\,\sigma(d)]_\mathbb{T}\); both \(g\) and \(h : [\rho(c),\,\sigma(d)]_\mathbb{T} \times [0,\,\infty) \to \mathbb{R}\) are continuous and semipositone. We have established the existence of at least one positive solution or multiple positive solutions of the above boundary value problem by using fixed point theorem on a cone in a Banach space, when \(g\) and \(h\) are both superlinear or sublinear or one is superlinear and the other is sublinear for \(\lambda_i>0;\,i=1,\,2\) are sufficiently small.
Keywords
D. R. Anderson and C. Zhai, “Positive solutions to semi-positone second-order three-point problems on time scale”, Appl. Math. Comput., vol. 215, no. 10, pp. 3713–3720, 2010.
D. R. Anderson and P. J. Y. Wong, “Positive solutions for second-order semipositone problems on time scales”, Comput. Math. Appl., vol. 58, no. 2, pp. 281–291, 2009.
R. Aris, Introduction to the analysis of chemical reactors, New Jersey: Prentice Hall, Engle- wood Cliffs, 1965.
D. Bai, and Y. Xu, “Positive solutions for semipositone BVPs of second-order difference equations”, Indian J. Pure Appl. Math., vol. 39, no.1, pp. 59–68, 2008.
M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Ap- plications, Boston: Birkh ̈auser, 2001.
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Boston: Birkhäuser, 2003.
R. Dahal, “Positive solutions for a second-order, singular semipositone dynamic boundary value problem”, Int. J. Dyn. Syst. Differ. Equ., vol. 3, no. 1–2, pp. 178–188, 2011.
L. Erbe and A. Peterson, “Positive solutions for a nonlinear differential equations on a measure chain”, Math. Comput. Modelling, vol. 32, no. 5–6, pp. 571–585, 2000.
C. Giorgi and E. Vuk, “Steady-state solutions for a suspension bridge with intermediate supports”, Bound. Value Probl., Paper No. 204, 17 pages, 2013.
C. S. Goodrich, “Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale”, Comment. Math. Univ. Carolin., vol. 54, no. 4, pp. 509–525, 2013.
S. Hilger, “Analysis on measure chains—a unified approach to continuous and discrete calculus”, Results Math., vol. 18, no. 1–2, pp. 18–56, 1990.
G. Infante, P. Pietramala and M. Tenuta, “Existence and localization of positive solutions for a nonlocal BVP arising in chemical reactor theory”, Commun. Nonlinear Sci. Numer. Simul., vol. 19, no 7, pp. 2245–2251, 2014.
M. A. Krasnosel‘skii, Positive Solutions of Operator Equations, Groningen: P. Noordhoff, 1964.
E. Kreyszig, Introductory Functional Analysis With Applications, New York: John Wiley & Sons, Inc., 1978.
J. Selgrade, “Using stocking and harvesting to reverse period-doubling bifurcations in models in population biology”, J. Differ. Equations Appl., vol. 4, no. 2, pp. 163–183, 1998.
J. P. Sun and W. T. Li, “Existence of positive solutions to semipositone Dirichlet BVPs on time scales”, Dynam. Systems Appl., vol. 16, no. 3, pp. 571–578, 2007.
Y. Yang and F. Meng, “Positive solutions of the singular semipositone boundary value problem on time scales”, Math. Comput. Modelling, vol. 52, no. 3–4, pp. 481–489.
Similar Articles
- Weihui Wang, Zuodong Yang, Nonnegative solutions of quasilinear elliptic problems with sublinear indefinite nonlinearity , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- S. Minkevicius, About cumulative idle time model of the message switching system , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Shrabani Banerjee, Binayak S. Choudhury, Weak and strong convergence theorems of a multistep iteration to a common fixed point of a family of nonself asymptotically nonexpansive mappings in banach spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Stanislas Ouaro, Weak and entropy solutions for a class of nonlinear inhomogeneous Neumann boundary value problem with variable exponent , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Xiao-Chuan Cai, Maksymilian Dryja, Marcus Sarkis, A Restricted Additive Schwarz Preconditioner with Harmonic Overlap for Symmetric Positive Definite Linear Systems , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Théodore K. Boni, Diabaté Nabongo, Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- John A.D. Appleby, James P. Gleeson, Alexandra Rodkina, Asymptotic Constancy and Stability in Nonautonomous Stochastic Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Seppo Heikkila, Fixed Point Results for Set-Valued and Single-Valued Mappings in Ordered Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Juliana Conceição Precioso, A Family of Stationary Solutions to the Euler Equations and Generalized Solutions , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Miklos N. Szilagyi, N-Person Prisoners' Dilemmas , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
<< < 5 6 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.











