Einstein warped product spaces on Lie groups
-
Buddhadev Pal
pal.buddha@gmail.com
-
Santosh Kumar
thakursantoshbhu@gmail.com
-
Pankaj Kumar
pankaj.kumar14@bhu.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2403.0485Abstract
We consider a compact Lie group with bi-invariant metric, coming from the Killing form. In this paper, we study Einstein warped product space, \(M = M_1 \times_{f_1} M_2\) for the cases, \((i)\) \(M_1\) is a Lie group \((ii)\) \(M_2\) is a Lie group and \((iii)\) both \(M_1\) and \(M_2\) are Lie groups. Moreover, we obtain the conditions for an Einstein warped product of Lie groups to become a simple product manifold. Then, we characterize the warping function for generalized Robertson-Walker spacetime, \((M = I \times_{f_1} G_2, - dt^2 + f_1^2 g_2)\) whose fiber \(G_2\), being semi-simple compact Lie group of \(\dim G_2>2\), having bi-invariant metric, coming from the Killing form.
Keywords
L. J. Alías, A. Romero and M. Sánchez, “Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes”, Gen. Relativity Gravitation, vol. 27, no. 1, pp. 71–84, 1995.
A. L. Besse, Einstein manifolds, Berlin: Springer-Verlag, 2007.
R. Bishop and B. O‘Neill, “Manifolds of negative curvature”, Trans. Am. Math. Soc., vol. 145, pp. 1–49, 1969.
N. Bokan, T. Å ukilović and S. Vukmirović, “Lorentz geometry of 4-dimensional nilpotent Lie groups”, Geom. Dedicata, vol. 177, pp. 83–102, 2015.
B. Y. Chen, “Twisted product CR-submanifolds in Kaehler manifolds”, Tamsui Oxf. J. Math. Sci., vol. 16, no. 2, pp. 105–121, 2000.
B. Y. Chen, “Geometry of warped product CR-submanifolds in Kaehler manifolds”, Monatsh. Math., vol. 133, no. 3, pp. 177–195, 2001.
B. Y. Chen, “Geometry of warped products as Riemannian submanifolds and related problems”, Soochow J. Math., vol. 28, no. 2, pp. 125–156, 2002.
Ì. Ciftci, “A generalization of Lancret‘s theorem”, J. Geom. Phys., vol. 59, no. 12, pp. 1597–1603, 2009.
F. Dobarro and E. Lami Dozo, “Scalar curvature and warped products of Riemann manifolds”, Trans. Amer. Math. Soc., vol. 303, no. 1, pp. 161–168, 1987.
P. E. Ehrlich, Y. T. Jung and S. B. Kim, “Constant scalar curvatures on warped product manifolds”, Tsukuba J. Math, vol. 20, no. 1, pp. 239–256, 1996.
M. Fernández-López, E. García-Río, D. N. Kupeli and B. Ìnal, “A curvature condition for a twisted product to be a warped product”, Manuscripta Math., vol. 106, no. 2, pp. 213–217, 2001.
J. Gallier and J. Quaintance, Differential geometry and Lie groups: a computational perspective, Geometry and Computing 12, Cham: Springer, 2020.
C. He, P. Petersen and W. Wylie, “On the classification of warped product Einstein metrics”, Comm. Anal. Geom., vol. 20, no. 2, pp. 271–311, 2012.
C. He, P. Petersen and W. Wylie, “Warped product Einstein metrics over spaces with constant scalar curvature”, Asian J. Math., vol. 18, no. 1, pp. 159–189, 2014.
C. He, P. Petersen and W. Wylie, “Warped product Einstein metrics on homogeneous spaces and homogeneous Ricci solitons”, J. Reine Angew. Math., vol. 707, pp. 217–245, 2015.
D. Kim and Y. Kim, “Compact Einstein warped product spaces with nonpositive scalar curvature”, Proc. Amer. Math. Soc., vol. 131, no. 8, pp. 2573–2576, 2003.
J. Lauret, “Homogeneous nilmanifolds of dimensions 3 and 4”, Geom. Dedicata, vol. 68, no. 2, pp. 145–155, 1997.
J. Lauret, “Degenerations of Lie algebras and geometry of Lie groups”, Differential Geom. Appl., vol. 18, no. 2, pp. 177–194, 2003.
J. Meléndez and M. Hernández, “A note on warped products”, J. Math. Anal. Appl., vol. 508, no. 2, pp. 161–168, 2022.
J. Milnor, “Curvatures of left invariant metrics on Lie groups”, Advances in Math., vol. 21, no. 3, pp. 293–329, 1976.
M. T. Mustafa, “A non-existence result for compact Einstein warped products”, J. Physics A., vol. 38, no. 47, pp. L791–L793, 2005.
O. Zeki Okuyucu, I. Gök, Y. Yayli and N. Ekmekci, “Slant helices in three dimensional Lie groups”, Appl. Math. Comput., vol. 221, pp. 672–683, 2013.
B. O‘Neill, Semi-Riemannian geometry with applications to relativity, New York: Academic Press, 1983.
S. Pahan, B. Pal and A. Bhattacharyya, “On Ricci flat warped products with a quarter- symmetric connection”, J. Geom., vol. 107, no. 3, pp. 627–634, 2016.
B. Pal and P. Kumar, “Compact Einstein multiply warped product space with nonpositive scalar curvature”, Int. J. Geom. Methods Mod. Phys., vol. 16, no. 10, 14 pages, 2019.
B. Pal and P. Kumar, “On Einstein warped product space with respect to semi symmetric metric connection”, Hacet. J. Math. Stat., vol. 50, no. 50, pp. 1477–1490, 2021.
P. Petersen, Riemannian geometry, Graduate Texts in Mathematics 171, New York: Springer, 2006.
R. Ponge, H. Reckziegel, “Twisted products in pseudo-Riemannian geometry”, Geom. Dedicata, vol. 48, no. 1, pp. 15–25, 1993.
J. Rahmani, “Métriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois”, J. Geom. Phys., vol. 9, no. 3, pp. 295–302, 1992.
M. Rimoldi, “A remark on Einstein warped products”, Pacific J. Math., vol. 252, no. 1, pp. 207–218, 2011.
M. Sánchez, “On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields”, J. Geom. Phys., vol. 31, no. 1, pp. 1–15, 1999.
B. Ìnal, “Multiply warped products”, J. Geom. Phys., vol. 34, no. 3–4, pp. 287–301, 2000.
B. Ìnal, “Doubly warped products”, Differential Geom. Appl., vol. 15, no. 3, pp. 253–263, 2001.
Similar Articles
- Stephen McDowall, Optical Tomography for Media with Variable Index of Refraction , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Hamed M. Obiedat, A Topological Characterization of the Beurling-Björck Space ð”–𜔠Using the Short-Time Fourier Transform , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Rinko Shinzato, Wataru Takahashi, A Strong Convergence Theorem by a New Hybrid Method for an Equilibrium Problem with Nonlinear Mappings in a Hilbert Space , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Sever Silvestru Dragomir, Eder Kikianty, Perturbed weighted trapezoid inequalities for convex functions with applications , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Volodymyr Sushch, Discrete model of Yang-Mills equations in Minkowski space , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Nejc Sirovnik, On certain functional equation in semiprime rings and standard operator algebras , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Valeriu Popa, Weakly Picard pairs of multifunctions , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Nakao Hayashi, Pavel l. Naumkin, Existence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in 3d , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Wilfrid Hodges, Saharon Shelah, Naturality and definability II , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.