Some observations on a clopen version of the Rothberger property
-
Manoj Bhardwaj
manojmnj27@gmail.com
-
Alexander V. Osipov
oab@list.ru
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.161Abstract
In this paper, we prove that a clopen version \(S_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) of the Rothberger property and Borel strong measure zeroness are independent. For a zero-dimensional metric space \((X,d)\), \(X\) satisfies \(S_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) if, and only if, \(X\) has Borel strong measure zero with respect to each metric which has the same topology as \(d\) has. In a zero-dimensional space, the game \(G_1(\mathcal{O}, \mathcal{O})\) is equivalent to the game \(G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) and the point-open game is equivalent to the point-clopen game. Using reflections, we obtain that the game \(G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) and the point-clopen game are strategically and Markov dual. An example is given for a space on which the game \(G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) is undetermined.
Keywords
Mathematics Subject Classification:
E. Borel, “Sur la classification des ensembles de mesure nulle”, Bull. Soc. Math. France, vol. 47, pp. 97–125, 1919.
M. Bhardwaj and A. V. Osipov, “Mildly version of Hurewicz basis covering property and Hurewicz measure zero spaces”, Bull. Belg. Math. Soc. Simon Stevin, vol. 29, no. 1, pp. 123–133, 2022.
M. Bhardwaj and A. V. Osipov, “Some observations on the mildly Menger property and topological games”, Filomat, vol. 36, no. 15, pp. 5289–5296, 2022.
M. Bhardwaj and A. V. Osipov, “Star versions of the Hurewicz basis covering property and strong measure zero spaces”, Turkish J. Math., vol. 44, no. 3, pp. 1042–1053, 2020.
S. Clontz and J. Holshouser, “Limited information strategies and discrete selectivity”, Topology Appl., vol. 265, Art. ID 106815, 2019.
S. Clontz, “Dual selection games”, Topology Appl., vol. 272, Art. ID 107056, 2020.
R. Engelking, General Topology, Revised and completed edition. Berlin, Germany: Heldermann Verlag, 1989.
F. Galvin, “Indeterminacy of point-open games”, Bull. Acad. Pol. Sci., vol. 26, no. 5, pp. 445–449, 1978.
W. Hurewicz, “Über eine verallgemeinerung des Borelschen theorems”, Math. Z., vol. 24, pp. 401–421, 1925.
A. W. Miller and D. H. Fremlin, “Some properties of Hurewicz, Menger and Rothberger”, Fund. Math., vol. 129, pp. 17–33, 1988.
J. Pawlikowski, “Undetermined sets of point-open games”, Fund. Math., vol. 144, pp. 279–285, 1994.
F. Rothberger, “Eine Verschörfung der Eigenschaft C”, Fund. Math., vol. 30, pp. 50–55, 1938.
M. Scheepers, “Combinatorics of open covers (I): Ramsey theory”, Topology Appl., vol. 69, no. 1, pp. 31–62, 1996.
R. Telgársky, “Spaces defined by topological games”, Fund. Math., vol. 88, pp. 193–223, 1975.
- Ministry of Science and Higher Education of the Russian Federation
Similar Articles
- Zead Mustafa, Hamed Obiedat, A fixed point theorem of Reich in \(G\)-Metric spaces , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- N. Seshagiri Rao, K. Kalyani, Fixed point results of \((\phi,\psi)\)-weak contractions in ordered \(b\)-metric spaces , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Elena I. Kaikina, Leonardo Guardado-Zavala, Hector F. Ruiz-Paredes, S. Juarez Zirate, Korteweg-de Vries-Burgers equation on a segment , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Rinko Shinzato, Wataru Takahashi, A Strong Convergence Theorem by a New Hybrid Method for an Equilibrium Problem with Nonlinear Mappings in a Hilbert Space , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Tetsuo Furumochi, Periodic Solutions of Periodic Difference Equations by Schauder‘s Theorem , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Shrabani Banerjee, Binayak S. Choudhury, Weak and strong convergence theorems of a multistep iteration to a common fixed point of a family of nonself asymptotically nonexpansive mappings in banach spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- A. Aghajani, D. O'Regan, A. Shole Haghighi, Measure of noncompactness on Lp(RN) and applications , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Joss Sánchez P., Characterization of the Banzhaf value using a consistency axiom , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Manoj Bhardwaj et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











