On generalized Hardy spaces associated with singular partial differential operators
-
Amal Ghandouri
amal.ghandouri@fst.utm.tn
-
Hatem Mejjaoli
mejjaoli.hatem@yahoo.fr
-
Slim Omri
slim.omri@fst.utm.tn
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.289Abstract
We define and study the Hardy spaces associated with singular partial differential operators. Also, a characterization by mean of atomic decomposition is investigated.
Keywords
Mathematics Subject Classification:
B. Amri, “The Hardy-Littlewood operator associated with the Riemann-Liouville transform”, Indag. Math. (N.S.), vol. 29, no. 5, pp. 1270–1289, 2018. doi: 10.1016/j.indag.2018.05.007
B. Amri and L. Rachdi, “The Littlewood-Paley g-function associated with the Riemann- Liouville operator”, Ann. Univ. Paedagog. Crac. Stud. Math., vol. 12, pp. 31–58, 2013.
C. Baccar, N. Ben Hamadi, and L. Rachdi, “Best approximation for Weierstrass transform connected with Riemann-Liouville operator”, Commun. Math. Anal., vol. 5, no. 1, pp. 65–83, 2008.
C. Baccar, N. Ben Hamadi and S. Omri, “Fourier multipliers associated with singular partial differential operators”, Oper. Matrices, vol. 11, no. 1, pp. 37–53, 2017. doi: 10.7153/oam-11-03
C. Baccar, N. Ben Hamadi and L. T. Rachdi, “Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial differential operators”, Int. J. Math. Math. Sci., vol. 2006, Art. ID 086238, 2006. doi: 10.1155/IJMMS/2006/86238
C. Baccar and L. T. Rachdi, “Spaces of DLp-type and a convolution product associated with the Riemann-Liouville operators”, Bull. Math. Anal. Appl., vol. 1, no. 3, pp. 16–41, 2009.
N. Ben Hamadi and L. T. Rachdi, “Weyl transforms associated with the Riemann-Liouville operator”. Int. J. Math. Math. Sci., vol. 2006, Art. ID 094768, 2006. doi: 10.1155/IJMMS/2006/94768
R. Coifman and G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., vol. 83, no. 4, pp. 569–645, 1977. doi: 10.1090/S0002-9904-1977-14325-5
J. A. Fawcett, “Inversion of n-dimensional spherical averages”, SIAM J. Appl. Math., vol. 45, no. 2, pp. 336–341, 1985. doi: 10.1137/0145018
C. Fefferman and E. N. Stein, “Hp spaces of several variables”, Acta Math., vol. 129, no. 3-4, pp. 137–193, 1972. doi: 10.1007/BF02392215
H. Helesten and L. E. Anderson, “An inverse method for the processing of synthetic aper- ture radar data”, Inverse Problems, vol. 3, no. 1, pp. 111–124, 1987. doi: 10.1088/0266- 5611/3/1/013
M. Herberthson, “A numerical implementation of an inverse formula for CARABAS raw Data”. Internal Report D 30430-3.2. National Defense Research Institute, FOA, Box 1165; S-581 11, Sweden, 1986.
K. Hleili, S. Omri and L. T. Rachdi, “Uncertainty principle for the Riemann-Liouville operator”, Cubo, vol. 13, no. 3, pp. 91–115, 2011. doi: 10.4067/s0719-06462011000300006
N. N. Lebedev, Special Functions and Their Applications. New York, USA: Dover Publications, Inc., 1972.
H. Mejjaoli and S. Omri, “Boundedness and compactness of Reimann-Liouville two- wavelet multipliers”, J. Pseudo-Differ. Oper. Appl., vol. 9, no. 2, pp. 189–213, 2018. doi: 10.1007/s11868-018-0235-2
S. Omri and L. T. Rachdi, “An Lp-Lq version of Morgan’s theorem associated with Riemann-Liouville transform”, Int. J. Math. Anal. (Ruse), vol. 1, no. 17-20, pp. 805–824, 2007.
S. Omri and L. T. Rachdi, “Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville Operator”, JIPAM. J. Inequal. Pure Appl. Math., vol. 9, no. 3, Art. ID 88, 2008.
L. T. Rachdi and A. Rouz, “On the range of the Fourier transform connected with Riemann-Liouville operator”, Ann. Math. Blaise Pascal, vol. 16, no. 2, pp. 355–397, 2009. doi: 10.5802/ambp.272
A. Uchiyama, “A maximal function characterization of Hp on the space of homogeneous type”, Trans. Amer. Math. Soc., vol. 262, no. 2, pp. 579–592, 1980. doi: 10.2307/1999848
A. Uchiyama, Hardy Spaces on the Euclidean Space, Springer Monographs in Mathematics, Tokyo, Japan: Springer-Verlag, 2001. doi: 10.1007/978-4-431-67905-9
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Li- brary, Cambridge, UK: Cambridge University Press, 1995.
Similar Articles
- Joss Sánchez P., Characterization of the Banzhaf value using a consistency axiom , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Zead Mustafa, Hamed Obiedat, A fixed point theorem of Reich in \(G\)-Metric spaces , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Ismael Bleyer, A. Leitão, On Tikhonov Functionals Penalized by Bregman Distances , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- George Venkov, Small Data Global Existence and Scattering for the Mass-Critical Nonlinear Schrödinger Equation with Power Convolution in ℳ , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Jijun Zhao, The Dynamic Evolution of Industrial Clusters , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
<< < 13 14 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Ghandouri et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











