Quotient rings satisfying some identities
-
Mohammadi El Hamdaoui
mathsup2011@gmail.com
-
Abdelkarim Boua
abdelkarimboua@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.455Abstract
This paper investigates the commutativity of the quotient ring \(\mathcal{R}/P\), where \(\mathcal{R}\) is an associative ring with a prime ideal \(P\), and the possibility of forms of derivations satisfying certain algebraic identities on \(\mathcal{R}\). We provide some results for strong commutativity-preserving derivations of prime rings.
Keywords
Mathematics Subject Classification:
A. Ali, M. Yasen, and M. Anwar, “Strong commutativity preserving mappings on semiprime rings,” Bull. Korean Math. Soc., vol. 43, no. 4, pp. 711–713, 2006, doi: 10.4134/BKMS.2006.43.4.711.
F. A. A. Almahdi, A. Mamouni, and M. Tamekkante, “A generalization of Posner’s Theorem on derivations in rings,” Indian J. Pure Appl. Math., vol. 51, no. 1, pp. 187–194, 2020, doi: https://doi.org/10.1007/s13226-020-0394-8.
K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with generalized identities, ser. Monographs and Textbooks in Pure and Applied Mathematics. New York, USA: Marcel Dekker, Inc., 1996, vol. 196.
H. E. Bell and M. N. Daif, “On commutativity and strong commutativity-preserving maps,” Canad. Math. Bull., vol. 37, no. 4, pp. 443–447, 1994, doi: https://doi.org/10.4153/CMB- 1994-064-x.
H. E. Bell and G. Mason, “On derivations in near-rings and rings,” Math. J. Okayama Univ., vol. 34, pp. 135–144, 1992.
M. Brešar, “Semiderivations of prime rings,” Proc. Amer. Math. Soc., vol. 108, no. 4, pp. 859–860, 1990, doi: 10.2307/2047937.
M. Brešar, “On the distance of the composition of two derivations to the generalized derivations,” Glasgow Math. J., vol. 33, no. 1, pp. 89–93, 1991, doi: 10.1017/S0017089500008077.
M. Brešar, “Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings,” Trans. Amer. Math. Soc., vol. 335, no. 2, pp. 525–546, 1993, doi: 10.2307/2154392.
M. Brešar and C. R. Miers, “Strong commutativity preserving maps of semiprime rings,” Canad. Math. Bull., vol. 37, no. 4, pp. 457–460, 1994, doi: 10.4153/CMB-1994-066-4.
Q. Deng and M. Ashraf, “On strong commutativity preserving mappings,” Results Math., vol. 30, no. 3-4, pp. 259–263, 1996, doi: 10.1007/BF03322194.
T.-K. Lee and T.-L. Wong, “Nonadditive strong commutativity preserving maps,” Comm. Algebra, vol. 40, no. 6, pp. 2213–2218, 2012, doi: 10.1080/00927872.2011.578287.
J.-S. Lin and C.-K. Liu, “Strong commutativity preserving maps on Lie ideals,” Linear Algebra Appl., vol. 428, no. 7, pp. 1601–1609, 2008, doi: 10.1016/j.laa.2007.10.006.
J.-S. Lin and C.-K. Liu, “Strong commutativity preserving maps in prime rings with involution,” Linear Algebra Appl., vol. 432, no. 1, pp. 14–23, 2010, doi: 10.1016/j.laa.2009.06.036.
C.-K. Liu, “Strong commutativity preserving generalized derivations on right ideals,” Monatsh. Math., vol. 166, no. 3-4, pp. 453–465, 2012, doi: 10.1007/s00605-010-0281-1.
C.-K. Liu and P.-K. Liau, “Strong commutativity preserving generalized derivations on Lie ideals,” Linear Multilinear Algebra, vol. 59, no. 8, pp. 905–915, 2011, doi: 10.1080/03081087.2010.535819.
J. Ma, X. W. Xu, and F. W. Niu, “Strong commutativity-preserving generalized derivations on semiprime rings,” Acta Math. Sin. (Engl. Ser.), vol. 24, no. 11, pp. 1835–1842, 2008, doi: 10.1007/s10114-008-7445-0.
E. C. Posner, “Derivations in prime rings,” Proc. Amer. Math. Soc., vol. 8, pp. 1093–1100, 1957, doi: 10.2307/2032686.
M. S. Samman, “On strong commutativity-preserving maps,” Int. J. Math. Math. Sci., vol. 2005, no. 6, pp. 917–923, 2005, doi: 10.1155/IJMMS.2005.917.
P. Šemrl, “Commutativity preserving maps”, Linear Algebra Appl., vol. 429, no. 5-6, pp. 1051– 1070, 2008, doi: 10.1016/j.laa.2007.05.006.
Similar Articles
- Minking Eie, Yao Lin Ong, A new approach to congruences of Kummer type for Bernoulli numbers , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Yogesh J. Bagul, Christophe Chesneau, Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Edoardo Ballico, A characterization of \(\mathbb F_q\)-linear subsets of affine spaces \(\mathbb F_{q^2}^n\) , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Maja Fosner, Benjamin Marcen, Nejc Sirovnik, On centralizers of standard operator algebras with involution , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- José Sanabria, Edumer Acosta, Carlos Carpintero, Ennis Rosas, Continuity via ΛsI-open sets , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 M. E. Hamdaoui et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.