Minimum-sized generating sets of the direct powers of free distributive lattices
Dedicated to the memory of George F. McNulty
-
Gábor Czédli
czedli@math.u-szeged.hu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.217Abstract
For a finite lattice \(L\), let Gm(\(L\)) denote the least \(n\) such that \(L\) can be generated by \(n\) elements. For integers \(r>2\) and \(k>1\), denote by FD\((r)^k\) the \(k\)-th direct power of the free distributive lattice FD(\(r\)) on \(r\) generators. We determine Gm(FD\((r)^k\)) for many pairs \((r,k)\) either exactly or with good accuracy by giving a lower estimate that becomes an upper estimate if we increase it by 1. For example, for \((r,k)=(5,25\,000)\) and \((r,k)=(20,\ 1.489\cdot 10^{1789})\), Gm(FD\((r)^k\)) is \(22\) and \(6\,000\), respectively. To reach our goal, we give estimates for the maximum number of pairwise unrelated copies of some specific posets (called full segment posets) in the subset lattice of an \(n\)-element set. In addition to analogous earlier results in lattice theory, a connection with cryptology is also mentioned among the motivations.
Keywords
Mathematics Subject Classification:
D. Ahmed and G. Czédli, “(1 + 1 + 2)-generated lattices of quasiorders,” Acta Sci. Math. (Szeged), vol. 87, no. 3-4, pp. 415–427, 2021, doi: 10.14232/actasm-021-303-1.
I. Chajda and G. Czédli, “How to generate the involution lattice of quasiorders?” Studia Sci. Math. Hungar., vol. 32, no. 3-4, pp. 415–427, 1996.
G. Czédli, “Generating boolean lattices by few elements and exchanging session keys,” 2023, arXiv:2303.10790.
G. Czédli, “Sperner theorems for unrelated copies of some partially ordered sets in a powerset lattice and minimum generating sets of powers of distributive lattices,” 2023, arXiv:2308.15625.
G. Czédli, “Four-generated direct powers of partition lattices and authentication,” Publ. Math. Debrecen, vol. 99, no. 3-4, pp. 447–472, 2021, doi: 10.5486/pmd.2021.9024.
G. Czédli, “Generating some large filters of quasiorder lattices,” Acta Sci. Math. (Szeged), 2024, doi: 10.1007/s44146-024-00139-5.
G. Czédli and L. Oluoch, “Four-element generating sets of partition lattices and their direct products,” Acta Sci. Math. (Szeged), vol. 86, no. 3-4, pp. 405–448, 2020, doi: 10.14232/actasm-020-126-7.
A. P. Dove and J. R. Griggs, “Packing posets in the Boolean lattice,” Order, vol. 32, no. 3, pp. 429–438, 2015, doi: 10.1007/s11083-014-9343-7.
I. M. Gel’fand and V. A. Ponomarev, “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space,” in Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970), ser. Colloq. Math. Soc. János Bolyai. North- Holland, Amsterdam-London, 1972, vol. 5, pp. 163–237.
G. Grätzer, Lattice Theory: Foundation. Birkhäuser/Springer Basel AG, Basel, 2011, doi: 10.1007/978-3-0348-0018-1.
J. R. Griggs, J. Stahl, and W. T. Trotter, Jr., “A Sperner theorem on unrelated chains of subsets,” J. Combin. Theory Ser. A, vol. 36, no. 1, pp. 124–127, 1984, doi: 10.1016/0097- 3165(84)90085-2.
G. O. H. Katona and D. T. Nagy, “Incomparable copies of a poset in the Boolean lattice,” Order, vol. 32, no. 3, pp. 419–427, 2015, doi: 10.1007/s11083-014-9342-8.
J. Kulin, “Quasiorder lattices are five-generated,” Discuss. Math. Gen. Algebra Appl., vol. 36, no. 1, pp. 59–70, 2016, doi: 10.7151/dmgaa.1248.
D. Lubell, “A short proof of Sperner’s lemma,” J. Combinatorial Theory, vol. 1, p. 299, 1966.
N. J. A. Sloane, “The On-Line Encyclopedia of Integer Sequences,” https://oeis.org/, accessed: 2024-06-07.
E. Sperner, “Ein Satz über Untermengen einer endlichen Menge,” Math. Z., vol. 27, no. 1, pp. 544–548, 1928, doi: 10.1007/BF01171114.
H. Strietz, “Über Erzeugendenmengen endlicher Partitionverbände,” Studia Sci. Math. Hun- garica, vol. 12, pp. 1–17, 1977.
G. Takách, “Three-generated quasiorder lattices,” Discuss. Math. Algebra Stochastic Methods, vol. 16, no. 1, pp. 81–98, 1996.
L. Zádori, “Generation of finite partition lattices,” in Lectures in universal algebra (Szeged, 1983), ser. Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam, 1986, vol. 43, pp. 573–586.
L. Zádori, “Subspace lattices of finite vector spaces are 5-generated,” Acta Sci. Math. (Szeged), vol. 74, no. 3-4, pp. 493–499, 2008.
Similar Articles
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Sepide Hajighasemi, Shirin Hejazian, Surjective maps preserving the reduced minimum modulus of products , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- M. Fakhar, J. Zafarani, A New Version of Fan‘s Theorem and its Applications , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- R. Devi, A. Selvakumar, M. Parimala, S. Jafari, On strongly α-ð˜-ð˜–ð‘ð‘’ð‘› sets and a new mapping , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Paolo D‘alessandro, Closure of pointed cones and maximum principle in Hilbert spaces , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Saroj Panigrahi, Sandip Rout, Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Laurent Amour, Benoit Grébert, Jean-Claude Guillot, A mathematical model for the Fermi weak interactions , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Colette Anné, Anne-Marie Charbonnel, Bohr-Sommerfeld conditions for several commuting Hamiltonians , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Irena Kosi-Ulbl, Joso Vukman, An identity related to derivations of standard operator algebras and semisimple H∗ -algebras , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 G. Czédli

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.