Minimum-sized generating sets of the direct powers of free distributive lattices
Dedicated to the memory of George F. McNulty
-
Gábor Czédli
czedli@math.u-szeged.hu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.217Abstract
For a finite lattice \(L\), let Gm(\(L\)) denote the least \(n\) such that \(L\) can be generated by \(n\) elements. For integers \(r>2\) and \(k>1\), denote by FD\((r)^k\) the \(k\)-th direct power of the free distributive lattice FD(\(r\)) on \(r\) generators. We determine Gm(FD\((r)^k\)) for many pairs \((r,k)\) either exactly or with good accuracy by giving a lower estimate that becomes an upper estimate if we increase it by 1. For example, for \((r,k)=(5,25\,000)\) and \((r,k)=(20,\ 1.489\cdot 10^{1789})\), Gm(FD\((r)^k\)) is \(22\) and \(6\,000\), respectively. To reach our goal, we give estimates for the maximum number of pairwise unrelated copies of some specific posets (called full segment posets) in the subset lattice of an \(n\)-element set. In addition to analogous earlier results in lattice theory, a connection with cryptology is also mentioned among the motivations.
Keywords
Mathematics Subject Classification:
D. Ahmed and G. Czédli, “(1 + 1 + 2)-generated lattices of quasiorders,” Acta Sci. Math. (Szeged), vol. 87, no. 3-4, pp. 415–427, 2021, doi: 10.14232/actasm-021-303-1.
I. Chajda and G. Czédli, “How to generate the involution lattice of quasiorders?” Studia Sci. Math. Hungar., vol. 32, no. 3-4, pp. 415–427, 1996.
G. Czédli, “Generating boolean lattices by few elements and exchanging session keys,” 2023, arXiv:2303.10790.
G. Czédli, “Sperner theorems for unrelated copies of some partially ordered sets in a powerset lattice and minimum generating sets of powers of distributive lattices,” 2023, arXiv:2308.15625.
G. Czédli, “Four-generated direct powers of partition lattices and authentication,” Publ. Math. Debrecen, vol. 99, no. 3-4, pp. 447–472, 2021, doi: 10.5486/pmd.2021.9024.
G. Czédli, “Generating some large filters of quasiorder lattices,” Acta Sci. Math. (Szeged), 2024, doi: 10.1007/s44146-024-00139-5.
G. Czédli and L. Oluoch, “Four-element generating sets of partition lattices and their direct products,” Acta Sci. Math. (Szeged), vol. 86, no. 3-4, pp. 405–448, 2020, doi: 10.14232/actasm-020-126-7.
A. P. Dove and J. R. Griggs, “Packing posets in the Boolean lattice,” Order, vol. 32, no. 3, pp. 429–438, 2015, doi: 10.1007/s11083-014-9343-7.
I. M. Gel’fand and V. A. Ponomarev, “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space,” in Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970), ser. Colloq. Math. Soc. János Bolyai. North- Holland, Amsterdam-London, 1972, vol. 5, pp. 163–237.
G. Grätzer, Lattice Theory: Foundation. Birkhäuser/Springer Basel AG, Basel, 2011, doi: 10.1007/978-3-0348-0018-1.
J. R. Griggs, J. Stahl, and W. T. Trotter, Jr., “A Sperner theorem on unrelated chains of subsets,” J. Combin. Theory Ser. A, vol. 36, no. 1, pp. 124–127, 1984, doi: 10.1016/0097- 3165(84)90085-2.
G. O. H. Katona and D. T. Nagy, “Incomparable copies of a poset in the Boolean lattice,” Order, vol. 32, no. 3, pp. 419–427, 2015, doi: 10.1007/s11083-014-9342-8.
J. Kulin, “Quasiorder lattices are five-generated,” Discuss. Math. Gen. Algebra Appl., vol. 36, no. 1, pp. 59–70, 2016, doi: 10.7151/dmgaa.1248.
D. Lubell, “A short proof of Sperner’s lemma,” J. Combinatorial Theory, vol. 1, p. 299, 1966.
N. J. A. Sloane, “The On-Line Encyclopedia of Integer Sequences,” https://oeis.org/, accessed: 2024-06-07.
E. Sperner, “Ein Satz über Untermengen einer endlichen Menge,” Math. Z., vol. 27, no. 1, pp. 544–548, 1928, doi: 10.1007/BF01171114.
H. Strietz, “Über Erzeugendenmengen endlicher Partitionverbände,” Studia Sci. Math. Hun- garica, vol. 12, pp. 1–17, 1977.
G. Takách, “Three-generated quasiorder lattices,” Discuss. Math. Algebra Stochastic Methods, vol. 16, no. 1, pp. 81–98, 1996.
L. Zádori, “Generation of finite partition lattices,” in Lectures in universal algebra (Szeged, 1983), ser. Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam, 1986, vol. 43, pp. 573–586.
L. Zádori, “Subspace lattices of finite vector spaces are 5-generated,” Acta Sci. Math. (Szeged), vol. 74, no. 3-4, pp. 493–499, 2008.
Similar Articles
- D. Le Peutrec, Small singular values of an extracted matrix of a Witten complex , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Peter Danchev, Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- R.A. Mollin, Cryptography - A Brief History , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Michael Drmota, Combinatorics and Asymptotics on Trees , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Ilker Sahin, Mustafa Telci, A Common Fixed Point Theorem for Pairs of Mappings in Cone Metric Spaces , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- George Leitmann, A Direct Method of Optimization and its Application to a Class of Differential Games , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Spiridon A. Kuruklis, Trisectors like Bisectors with equilaterals instead of Points , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Renukadevi S. Dyavanal, Ashwini M. Hattikal, Madhura M. Mathai, Uniqueness of meromorphic functions sharing a set in annuli , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Iris A. López, On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 G. Czédli

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.