Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity
-
Elhoussain Arhrrabi
arhrrabi.elhoussain@gmail.com
-
Hamza El-Houari
h.elhouari94@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.407Abstract
This study extensively investigates a specific category of Kirchhoff-Schrödinger systems in fractional Sobolev space with Dirichlet boundary conditions. The main focus is on exploring the existence and multiplicity of non-negative solutions. The non-linearity of the problem generally exhibits singularity. By employing minimization arguments involving the Nehari manifold and a variational approach, we establish the existence and multiplicity of positive solutions for our problem with respect to the parameters \(\eta\) and \(\zeta\) in suitable fractional Sobolev spaces. Our key findings are novel and contribute significantly to the literature on coupled systems of Kirchhoff-Schrödinger system with Dirichlet boundary conditions.
Keywords
Mathematics Subject Classification:
D. Applebaum, Lévy processes and stochastic calculus, 2nd ed., ser. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2009, vol. 116, doi: 10.1017/CBO9780511809781.
G. M. Bisci, N. V. Thin, and L. Vilasi, “On a class of nonlocal Schrödinger equations with exponential growth,” Adv. Differential Equations, vol. 27, no. 9-10, pp. 571–610, 2022.
H. Brezis, Analyse fonctionnelle, ser. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983, théorie et applications. [Theory and applications].
F. Cammaroto and L. Vilasi, “Weak solutions for a fractional equation in Rn with Kirchhoff terms,” Complex Var. Elliptic Equ., vol. 61, no. 10, pp. 1362–1374, 2016, doi: 10.1080/17476933.2016.1177029.
L. S. Chadli, H. El-Houari, and H. Moussa, “Multiplicity of solutions for nonlocal parametric elliptic systems in fractional Orlicz-Sobolev spaces,” J. Elliptic Parabol. Equ., vol. 9, no. 2, pp. 1131–1164, 2023, doi: 10.1007/s41808-023-00238-4.
W. Chen and S. Deng, “The Nehari manifold for a fractional p-Laplacian system involving concave-convex nonlinearities,” Nonlinear Anal. Real World Appl., vol. 27, pp. 80–92, 2016, doi: 10.1016/j.nonrwa.2015.07.009.
A. Cotsiolis and N. K. Tavoularis, “Best constants for Sobolev inequalities for higher order fractional derivatives,” J. Math. Anal. Appl., vol. 295, no. 1, pp. 225–236, 2004, doi: 10.1016/j.jmaa.2004.03.034.
M. G. Crandall, P. H. Rabinowitz, and L. Tartar, “On a Dirichlet problem with a singular nonlinearity,” Comm. Partial Differential Equations, vol. 2, no. 2, pp. 193–222, 1977, doi: 10.1080/03605307708820029.
R. Dhanya, J. Giacomoni, S. Prashanth, and K. Saoudi, “Global bifurcation and local multiplicity results for elliptic equations with singular nonlinearity of super exponential growth in R2,” Adv. Differential Equations, vol. 17, no. 3-4, pp. 369–400, 2012.
E. Di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces,” Bull. Sci. Math., vol. 136, no. 5, pp. 521–573, 2012, doi: 10.1016/j.bulsci.2011.12.004.
P. Drábek and S. I. Pohozaev, “Positive solutions for the p-Laplacian: application of the fibering method,” Proc. Roy. Soc. Edinburgh Sect. A, vol. 127, no. 4, pp. 703–726, 1997, doi: 10.1017/S0308210500023787.
H. El-Houari, L. S. Chadli, and H. Moussa, “Existence of solution to M-Kirchhoff system type,” in 2021 7th International Conference on Optimization and Applications (ICOA), 2021, doi: 10.1109/ICOA51614.2021.9442669.
H. El-Houari, L. S. Chadli, and M. Hicham, “Nehari manifold and fibering map approach for fractional p(.)-Laplacian Schrödinger system,” SeMA Journal, 2023, doi: 10.1007/s40324-023-00343-3.
A. Fiscella, “A fractional Kirchhoff problem involving a singular term and a critical nonlinearity,” Adv. Nonlinear Anal., vol. 8, no. 1, pp. 645–660, 2019, doi: 10.1515/anona-2017-0075.
A. Ghanmi and K. Saoudi, “A multiplicity results for a singular problem involving the fractional p-Laplacian operator,” Complex Var. Elliptic Equ., vol. 61, no. 9, pp. 1199–1216, 2016, doi: 10.1080/17476933.2016.1154548.
A. Ghanmi and K. Saoudi, “The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator,” Fract. Differ. Calc., vol. 6, no. 2, pp. 201–217, 2016, doi: 10.7153/fdc-06-13.
M. Ghergu and V. D. Rădulescu, Singular elliptic problems: bifurcation and asymptotic analysis, ser. Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, Oxford, 2008, vol. 37.
A. Iannizzotto, S. Liu, K. Perera, and M. Squassina, “Existence results for fractional p-Laplacian problems via Morse theory,” Adv. Calc. Var., vol. 9, no. 2, pp. 101–125, 2016, doi: 10.1515/acv-2014-0024.
C.-Y. Lei, J.-F. Liao, and C.-L. Tang, “Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents,” J. Math. Anal. Appl., vol. 421, no. 1, pp. 521–538, 2015, doi: 10.1016/j.jmaa.2014.07.031.
J.-F. Liao, X.-F. Ke, C.-Y. Lei, and C.-L. Tang, “A uniqueness result for Kirchhoff type problems with singularity,” Appl. Math. Lett., vol. 59, pp. 24–30, 2016, doi: 10.1016/j.aml.2016.03.001.
J.-F. Liao, P. Zhang, J. Liu, and C.-L. Tang, “Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity,” J. Math. Anal. Appl., vol. 430, no. 2, pp. 1124–1148, 2015, doi: 10.1016/j.jmaa.2015.05.038.
R.-Q. Liu, C.-L. Tang, J.-F. Liao, and X.-P. Wu, “Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four,” Commun. Pure Appl. Anal., vol. 15, no. 5, pp. 1841–1856, 2016, doi: 10.3934/cpaa.2016006.
G. Molica Bisci, V. D. Radulescu, and R. Servadei, Variational methods for nonlocal fractional problems, ser. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2016, vol. 162, doi: 10.1017/CBO9781316282397.
T. V. Nguyen, “Existence of solution to singular Schrödinger systems involving the fractional p-Laplacian with Trudinger-Moser nonlinearity in RN,” Math. Methods Appl. Sci., vol. 44, no. 8, pp. 6540–6570, 2021, doi: 10.1002/mma.7208.
K. Perera, M. Squassina, and Y. Yang, “Bifurcation and multiplicity results for critical fractional p-Laplacian problems,” Math. Nachr., vol. 289, no. 2-3, pp. 332–342, 2016, doi: 10.1002/mana.201400259.
W. Rudin, Real and complex analysis. 1966. McGraw-Hill Book Co., New York-Toronto-London.
K. Saoudi, “A fractional Kirchhoff system with singular nonlinearities,” Anal. Math. Phys., vol. 9, no. 3, pp. 1463–1480, 2019, doi: 10.1007/s13324-018-0251-7.
K. Saoudi and M. Kratou, “Existence of multiple solutions for a singular and quasi-linear equation,” Complex Var. Elliptic Equ., vol. 60, no. 7, pp. 893–925, 2015, doi: 10.1080/17476933.2014.981169.
K. Saoudi, “A critical fractional elliptic equation with singular nonlinearities,” Fract. Calc. Appl. Anal., vol. 20, no. 6, pp. 1507–1530, 2017, doi: 10.1515/fca-2017-0079.
K. Saoudi, “Existence and non-existence of solutions for a singular problem with variable potentials,” Electron. J. Differential Equations, 2017, Art. ID 291.
K. Saoudi, M. Kratou, and E. Al Zahrani, “Uniqueness and existence of solutions for a singular system with nonlocal operator via perturbation method,” J. Appl. Anal. Comput., vol. 10, no. 4, pp. 1311–1325, 2020.
G. Tarantello, “On nonhomogeneous elliptic equations involving critical Sobolev exponent,” Ann. Inst. H. Poincaré C Anal. Non Linéaire, vol. 9, no. 3, pp. 281–304, 1992, doi: 10.1016/S0294-1449(16)30238-4.
C. E. Torres Ledesma, “Existence and symmetry result for fractional p-Laplacian in Rn,” Commun. Pure Appl. Anal., vol. 16, no. 1, pp. 99–113, 2017, doi: 10.3934/cpaa.2017004.
M. Xiang, B. Zhang, and V. D. Rădulescu, “Superlinear Schrödinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent,” Adv. Nonlinear Anal., vol. 9, no. 1, pp. 690–709, 2020, doi: 10.1515/anona-2020-0021.
M. Xiang, B. Zhang, and Z. Wei, “Existence of solutions to a class of quasilinear Schrödinger systems involving the fractional p-Laplacian,” Electron. J. Qual. Theory Differ. Equ., 2016, Art. ID 107, doi: 10.14232/ejqtde.2016.1.107.
J. Yang, H. Chen, and Z. Feng, “Multiple positive solutions to the fractional Kirchhoff problem with critical indefinite nonlinearities,” Electron. J. Differential Equations, 2020, Art. ID 101.
Most read articles by the same author(s)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
Similar Articles
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Goutam Haldar, Uniqueness of entire functions whose difference polynomials share a polynomial with finite weight , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Masaya Kawamura, On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Andrew Craig, Miroslav Haviar, José São João, Dual digraphs of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Svetlin Georgiev, Mohamed Majdoub, Two nonnegative solutions for two-dimensional nonlinear wave equations , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Manuel Saavedra, Helmuth Villavicencio, On the minimum ergodic average and minimal systems , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Youssef N. Raffoul, Boundedness and stability in nonlinear systems of differential equations using a modified variation of parameters formula , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Mudasir Younis, Nikola Mirkov, Ana Savić, Mirjana Pantović, Stojan Radenović, Some critical remarks on recent results concerning \(\digamma-\)contractions in \(b-\)metric spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 E. Arhrrabi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.