Vector-valued algebras and variants of amenability
-
Terje Hill
terjehill@fau.edu
-
David A. Robbins
david.robbins@trincoll.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.619Abstract
Let \(\{A_{x}:x\in X\}\) be a collection of complex Banach algebras indexed by the compact Hausdorff space \(X\). We investigate the weak- and pseudo-amenability of certain algebras \(\mathcal{A}\) of \(A_{x}\)-valued functions in relation to the corresponding properties of the \(A_{x}\).
Keywords
Mathematics Subject Classification:
M. Abel, M. Abel, and P. Tammo, “Closed ideals in algebras of sections,” Rend. Circ. Mat. Palermo (2), vol. 59, no. 3, pp. 405–418, 2010, doi: 10.1007/s12215-010-0031-1.
H. G. Dales, Banach algebras and automatic continuity, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000, vol. 24.
F. Ghahramani and Y. Zhang, “Pseudo-amenable and pseudo-contractible Banach algebras,” Math. Proc. Cambridge Philos. Soc., vol. 142, no. 1, pp. 111–123, 2007, doi: 10.1017/S0305004106009649.
G. Gierz, “Representation of spaces of compact operators and applications to the approximation property,” Arch. Math. (Basel), vol. 30, no. 6, pp. 622–628, 1978, doi: 10.1007/BF01226110.
G. Gierz, Bundles of topological vector spaces and their duality, ser. Queen’s Papers in Pure and Applied Mathematics. Springer-Verlag, Berlin–New York, 1982, vol. 57.
N. Groenbaek, “A characterization of weakly amenable Banach algebras,” Studia Math., vol. 94, no. 2, pp. 149–162, 1989, doi: 10.4064/sm-94-2-149-162.
T. Höim and D. A. Robbins, “Some extremal properties of section spaces of Banach bundles and their duals. II,” Quaest. Math., vol. 26, no. 1, pp. 57–65, 2003, doi: 10.2989/16073600309486043.
T. Höim and D. A. Robbins, “Spectral synthesis and other results in some topological algebras of vector-valued functions,” Quaest. Math., vol. 34, no. 3, pp. 361–376, 2011, doi: 10.2989/16073606.2011.622899.
T. Höim and D. A. Robbins, “Amenability as hereditary property in some algebras of vector-valued functions,” in Function spaces in analysis, ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2015, vol. 645, pp. 135–144, doi: 10.1090/conm/645/12927.
A. Y. Helemskii, The homology of Banach and topological algebras, ser. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989, vol. 41, doi: 10.1007/978-94-009-2354-6.
T. Hill and D. A. Robbins, “Module bundles and module amenability,” Acta Comment. Univ. Tartu. Math., vol. 25, no. 1, pp. 119–141, 2021, doi: 10.12697/acutm.2021.25.08.
T. Hill and D. A. Robbins, “Character amenability of vector-valued algebras,” Acta Comment. Univ. Tartu. Math., vol. 27, no. 2, pp. 257–268, 2023.
B. E. Johnson, Cohomology in Banach algebras, ser. Memoirs of the American Mathematical Society. American Mathematical Society, Providence, RI, 1972, vol. 127.
J. W. Kitchen and D. A. Robbins, “Gel’fand representation of Banach modules,” Dissertationes Math. (Rozprawy Mat.), vol. 203, p. 47, 1982.
O. T. Mewomo, “Various notions of amenability in Banach algebras,” Expo. Math., vol. 29, no. 3, pp. 283–299, 2011, doi: 10.1016/j.exmath.2011.06.003.
W. Paravicini, “A note on Banach C0(X)-modules,” Münster J. Math., vol. 1, pp. 267–278, 2008.
R. A. Ryan, Introduction to tensor products of Banach spaces, ser. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2002, doi: 10.1007/978-1-4471-3903-4.
Similar Articles
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- M. Caldas, E. Hatir, S. Jafari, T. Noiri, A New Kupka Type Continuity, λ-Compactness and Multifunctions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Joachim Toft, Pseudo-differential operators with smooth symbols on modulation spaces , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Jean M. Tchuenche, A Uniqueness Theorem in an Age-Physiology Dependent Population Dynamics , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Fujisaki Masatoshi, Nonlinear semigroup associated with maximizing operator and large deviation , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Leigh C. Becker, T. A. Burton, Jensen's Inequality and Liapunov's Direct Method , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Jito Vanualailai, Bibhya Sharma, Moving a Robot Arm: An interesting application of the Direct method of Lyapunov , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- C.W. Groetsch, Tartaglia's Bet , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Pietro i Poggi-Corradini, Iteration of analytic self-maps of the disk: an overview , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
<< < 5 6 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 T. Hill et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











