Vector-valued algebras and variants of amenability
-
Terje Hill
terjehill@fau.edu
-
David A. Robbins
david.robbins@trincoll.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.619Abstract
Let \(\{A_{x}:x\in X\}\) be a collection of complex Banach algebras indexed by the compact Hausdorff space \(X\). We investigate the weak- and pseudo-amenability of certain algebras \(\mathcal{A}\) of \(A_{x}\)-valued functions in relation to the corresponding properties of the \(A_{x}\).
Keywords
Mathematics Subject Classification:
M. Abel, M. Abel, and P. Tammo, “Closed ideals in algebras of sections,” Rend. Circ. Mat. Palermo (2), vol. 59, no. 3, pp. 405–418, 2010, doi: 10.1007/s12215-010-0031-1.
H. G. Dales, Banach algebras and automatic continuity, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000, vol. 24.
F. Ghahramani and Y. Zhang, “Pseudo-amenable and pseudo-contractible Banach algebras,” Math. Proc. Cambridge Philos. Soc., vol. 142, no. 1, pp. 111–123, 2007, doi: 10.1017/S0305004106009649.
G. Gierz, “Representation of spaces of compact operators and applications to the approximation property,” Arch. Math. (Basel), vol. 30, no. 6, pp. 622–628, 1978, doi: 10.1007/BF01226110.
G. Gierz, Bundles of topological vector spaces and their duality, ser. Queen’s Papers in Pure and Applied Mathematics. Springer-Verlag, Berlin–New York, 1982, vol. 57.
N. Groenbaek, “A characterization of weakly amenable Banach algebras,” Studia Math., vol. 94, no. 2, pp. 149–162, 1989, doi: 10.4064/sm-94-2-149-162.
T. Höim and D. A. Robbins, “Some extremal properties of section spaces of Banach bundles and their duals. II,” Quaest. Math., vol. 26, no. 1, pp. 57–65, 2003, doi: 10.2989/16073600309486043.
T. Höim and D. A. Robbins, “Spectral synthesis and other results in some topological algebras of vector-valued functions,” Quaest. Math., vol. 34, no. 3, pp. 361–376, 2011, doi: 10.2989/16073606.2011.622899.
T. Höim and D. A. Robbins, “Amenability as hereditary property in some algebras of vector-valued functions,” in Function spaces in analysis, ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2015, vol. 645, pp. 135–144, doi: 10.1090/conm/645/12927.
A. Y. Helemskii, The homology of Banach and topological algebras, ser. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989, vol. 41, doi: 10.1007/978-94-009-2354-6.
T. Hill and D. A. Robbins, “Module bundles and module amenability,” Acta Comment. Univ. Tartu. Math., vol. 25, no. 1, pp. 119–141, 2021, doi: 10.12697/acutm.2021.25.08.
T. Hill and D. A. Robbins, “Character amenability of vector-valued algebras,” Acta Comment. Univ. Tartu. Math., vol. 27, no. 2, pp. 257–268, 2023.
B. E. Johnson, Cohomology in Banach algebras, ser. Memoirs of the American Mathematical Society. American Mathematical Society, Providence, RI, 1972, vol. 127.
J. W. Kitchen and D. A. Robbins, “Gel’fand representation of Banach modules,” Dissertationes Math. (Rozprawy Mat.), vol. 203, p. 47, 1982.
O. T. Mewomo, “Various notions of amenability in Banach algebras,” Expo. Math., vol. 29, no. 3, pp. 283–299, 2011, doi: 10.1016/j.exmath.2011.06.003.
W. Paravicini, “A note on Banach C0(X)-modules,” Münster J. Math., vol. 1, pp. 267–278, 2008.
R. A. Ryan, Introduction to tensor products of Banach spaces, ser. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2002, doi: 10.1007/978-1-4471-3903-4.
Similar Articles
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Bruno De Malafosse, Vladimir RakoÄević, Calculations in new sequence spaces and application to statistical convergence , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- E. Ait. Dads, O. Arino, Fonctions Pseudo Presque-Périodiques , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Abdi Oli, Kelelaw Tilahun, G. V. Reddy, The Multivariable Aleph-function involving the Generalized Mellin-Barnes Contour Integrals , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Jean-François Bony, Vincent Bruneau, Philippe Briet, Georgi Raikov, Resonances and SSF Singularities for Magnetic Schrödinger Operators , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Consuelo Martinez, Algebra no conmutativa: Del finito al Infinito , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Takahiro Sudo, Real and stable ranks for certain crossed products of Toeplitz algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 T. Hill et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










