Vector-valued algebras and variants of amenability
-
Terje Hill
terjehill@fau.edu
-
David A. Robbins
david.robbins@trincoll.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.619Abstract
Let \(\{A_{x}:x\in X\}\) be a collection of complex Banach algebras indexed by the compact Hausdorff space \(X\). We investigate the weak- and pseudo-amenability of certain algebras \(\mathcal{A}\) of \(A_{x}\)-valued functions in relation to the corresponding properties of the \(A_{x}\).
Keywords
Mathematics Subject Classification:
M. Abel, M. Abel, and P. Tammo, “Closed ideals in algebras of sections,” Rend. Circ. Mat. Palermo (2), vol. 59, no. 3, pp. 405–418, 2010, doi: 10.1007/s12215-010-0031-1.
H. G. Dales, Banach algebras and automatic continuity, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 2000, vol. 24.
F. Ghahramani and Y. Zhang, “Pseudo-amenable and pseudo-contractible Banach algebras,” Math. Proc. Cambridge Philos. Soc., vol. 142, no. 1, pp. 111–123, 2007, doi: 10.1017/S0305004106009649.
G. Gierz, “Representation of spaces of compact operators and applications to the approximation property,” Arch. Math. (Basel), vol. 30, no. 6, pp. 622–628, 1978, doi: 10.1007/BF01226110.
G. Gierz, Bundles of topological vector spaces and their duality, ser. Queen’s Papers in Pure and Applied Mathematics. Springer-Verlag, Berlin–New York, 1982, vol. 57.
N. Groenbaek, “A characterization of weakly amenable Banach algebras,” Studia Math., vol. 94, no. 2, pp. 149–162, 1989, doi: 10.4064/sm-94-2-149-162.
T. Höim and D. A. Robbins, “Some extremal properties of section spaces of Banach bundles and their duals. II,” Quaest. Math., vol. 26, no. 1, pp. 57–65, 2003, doi: 10.2989/16073600309486043.
T. Höim and D. A. Robbins, “Spectral synthesis and other results in some topological algebras of vector-valued functions,” Quaest. Math., vol. 34, no. 3, pp. 361–376, 2011, doi: 10.2989/16073606.2011.622899.
T. Höim and D. A. Robbins, “Amenability as hereditary property in some algebras of vector-valued functions,” in Function spaces in analysis, ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2015, vol. 645, pp. 135–144, doi: 10.1090/conm/645/12927.
A. Y. Helemskii, The homology of Banach and topological algebras, ser. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989, vol. 41, doi: 10.1007/978-94-009-2354-6.
T. Hill and D. A. Robbins, “Module bundles and module amenability,” Acta Comment. Univ. Tartu. Math., vol. 25, no. 1, pp. 119–141, 2021, doi: 10.12697/acutm.2021.25.08.
T. Hill and D. A. Robbins, “Character amenability of vector-valued algebras,” Acta Comment. Univ. Tartu. Math., vol. 27, no. 2, pp. 257–268, 2023.
B. E. Johnson, Cohomology in Banach algebras, ser. Memoirs of the American Mathematical Society. American Mathematical Society, Providence, RI, 1972, vol. 127.
J. W. Kitchen and D. A. Robbins, “Gel’fand representation of Banach modules,” Dissertationes Math. (Rozprawy Mat.), vol. 203, p. 47, 1982.
O. T. Mewomo, “Various notions of amenability in Banach algebras,” Expo. Math., vol. 29, no. 3, pp. 283–299, 2011, doi: 10.1016/j.exmath.2011.06.003.
W. Paravicini, “A note on Banach C0(X)-modules,” Münster J. Math., vol. 1, pp. 267–278, 2008.
R. A. Ryan, Introduction to tensor products of Banach spaces, ser. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2002, doi: 10.1007/978-1-4471-3903-4.
Similar Articles
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- S. Haq, K.S. Nisar, A.H. Khan, D.L. Suthar, Certain integral Transforms of the generalized Lommel-Wright function , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- René Schott, G. Stacey Staples, Operator homology and cohomology in Clifford algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Fernando Levstein, Carolina Maldonado, Generalized quadrangles and subconstituent algebra , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Mohadeseh Rostamani, Shirin Hejazian, Maps preserving Fredholm or semi-Fredholm elements relative to some ideal , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Ana Fuenzalida, Alicia Labra, Cristian Mallol, On Quasi orthogonal Bernstein Jordan algebras , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- M. E. Luna, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Laurent Amour, Benoit Grébert, Jean-Claude Guillot, A mathematical model for the Fermi weak interactions , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Peter Danchev, Notes on the Isomorphism and Splitting Problems for Commutative Modular Group Algebras , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 T. Hill et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










