Absolutely continuous spectrum preservation: A new proof for unitary operators under finite-rank multiplicative perturbations
-
Pablo A. Díaz
pablo.diaz@usach.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.701Abstract
We will provide a new proof of the Birman-Krein theorem for unitary operators multiplicatively perturbed by finite-rank operators, which is nothing more than the Kato-Rosenblum theorem, but instead of self-adjoint operators. In other words, \(U\) is a unitary operator and \(X\) is a unitary operator given by a finite rank perturbation of the identity, i.e., \(X=\mathbf{1}+W\) with \(W\) finite rank. We show that \(U\) and its perturbed version \(UX\) (or \(XU\)) are unitarily equivalent on their absolutely continuous subspaces.
Keywords
Mathematics Subject Classification:
M. Š. Birman and M. G. Kreĭn, “On the theory of wave operators and scattering operators,” Dokl. Akad. Nauk SSSR, vol. 144, pp. 475–478, 1962.
L. de Branges and L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 23, pp. 294–326, 1968, doi: 10.1016/0022-247X(68)90069-3.
J. S. Howland, “On a theorem of Aronszajn and Donoghue on singular spectra,” Duke Math. J., vol. 41, pp. 141–143, 1974.
T. Kato, Perturbation theory for linear operators, ser. Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1966, vol. 132.
L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 28, pp. 231–254, 1969, doi: 10.1016/0022-247X(69)90025-0.
L. Shulman, “Perturbations of unitary transformations,” Amer. J. Math., vol. 91, pp. 267–288, 1969, doi: 10.2307/2373282.
B. Simon, “Analogs of the m-function in the theory of orthogonal polynomials on the unit circle,” J. Comput. Appl. Math., vol. 171, no. 1–2, pp. 411–424, 2004, doi: 10.1016/j.cam.2004.01.022.
Similar Articles
- Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- A. Bultheel, H. Mart´Ä±nez, An introduction to the Fractional Fourier Transform and friends , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Bruno Costa, Spectral Methods for Partial Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Pertti Mattila, Search for geometric criteria for removable sets of bounded analytic functions , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- H. Miranda, Robert C. Thompson, A trace inequality with a subtracted term , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- M.K. Gupta, Rupen Pratap Singh, Connectedness in Fuzzy bitopological Spaces , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Takahiro Sudo, A covering dimension for ð¶*-algebras , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- M.O Korpusov, A. G. Sveschnikov, On blowing-up of solutions of Sobolev-type equation with source , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- S. H. Mousavizadegan, Matiur Rahman, Nonlinear Instability of Dispersive Waves , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
<< < 8 9 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P. A. Diaz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











