Blow-up and global existence of solutions for a higher-order reaction diffusion equation with singular potential
-
Erhan Pişkin
episkin@dicle.edu.tr
-
Ayşe Fidan
afidanmat@gmail.com
-
Jorge Ferreira
ferreirajorge2012@gmail.com
-
Mohammad Shahrouzi
shahrouzi@um.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2801.079Abstract
In this work, we consider the higher-order reaction-diffusion parabolic problem with time dependent coefficient. We prove the blow-up of solutions and obtain a lower and an upper bound for the blow-up time. Finally, we investigate the existence of a global weak solution to the problem.
Keywords
Mathematics Subject Classification:
R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., ser. Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 2003, vol. 140.
A. B. Al’shin, M. O. Korpusov, and A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, ser. De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 2011, vol. 15, doi: 10.1515/9783110255294.
A. A. Balinsky, W. D. Evans, and R. T. Lewis, The analysis and geometry of Hardy’s inequality, ser. Universitext. Springer, Cham, 2015, doi: 10.1007/978-3-319-22870-9.
G. Butakın and E. Pişkin, “Blow up of solutions for a fourth-order reaction-diffusion equation in variable-exponent Sobolev spaces,” Filomat, vol. 38, no. 23, pp. 8225–8242, 2024.
T. D. Do, N. N. Trong, and B. L. T. Thanh, “On a higher-order reaction-diffusion equation with a special medium void via potential well method,” Taiwanese J. Math., vol. 27, no. 1, pp. 53–79, 2023, doi: 10.11650/tjm/220703.
A. Fidan, E. Pişkin, and E. Celik, “Existence, decay, and blow-up of solutions for a weighted m-biharmonic equation with nonlinear damping and source terms,” J. Funct. Spaces, pp. 1–18, 2024, Art. ID 5866792, doi: 10.1155/2024/5866792.
V. A. Galaktionov, E. L. Mitidieri, and S. I. Pohozaev, Blow-up for higher-order parabolic, hyperbolic, dispersion and Schrödinger equations, ser. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
V. A. Galaktionov and J. L. Vázquez, “The problem of blow-up in nonlinear parabolic equations,” 2002, vol. 8, no. 2, pp. 399–433, current developments in partial differential equations (Temuco, 1999).
Y. Han, “Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity,” J. Dyn. Control Syst., vol. 27, no. 2, pp. 261–270, 2021, doi: 10.1007/s10883-020-09495-1.
Y. Han, “Blow-up phenomena for a reaction diffusion equation with special diffusion process,” Appl. Anal., vol. 101, no. 6, pp. 1971–1983, 2022, doi: 10.1080/00036811.2020.1792447.
B. Hu, Blow-up theories for semilinear parabolic equations, ser. Lecture Notes in Mathematics. Springer, Heidelberg, 2011, vol. 2018, doi: 10.1007/978-3-642-18460-4.
V. K. Kalantarov and O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types,” J. Soviet Math., vol. 10, pp. 53–70, 1978.
H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations,” Arch. Rational Mech. Anal., vol. 51, pp. 371–386, 1973.
J. Nečas, Direct Methods in the Theory of Elliptic Equations, ser. Springer Monographs in Mathematics. Heidelberg: Springer, 2012.
I. B. Omrane, S. Gala, J.-M. Kim, and M. A. Ragusa, “Logarithmically improved blow-up criterion for smooth solutions to the Leray-α-magnetohydrodynamic equations,” Arch. Math. (Brno), vol. 55, no. 1, pp. 55–68, 2019, doi: 10.1007/s00013-019-01312-5.
G. A. Philippin, “Blow-up phenomena for a class of fourth-order parabolic problems,” Proc. Amer. Math. Soc., vol. 143, no. 6, pp. 2507–2513, 2015.
E. Pişkin, Blow Up of Solutions of Evolution Equations. Pegem Publishing, 2022.
E. Pişkin and B. Okutmuştur, An Introduction to Sobolev Spaces. Bentham Science Publishers, 2021.
M. Shahrouzi, “Blow-up analysis for a class of higher-order viscoelastic inverse problem with positive initial energy and boundary feedback,” Ann. Mat. Pura Appl., vol.196, pp.1877–1886, 2017, doi: 10.1007/s10231-017-0644-5.
M. Shahrouzi, “Asymptotic behavior of solutions for a nonlinear viscoelastic higher-order p(x)-Laplacian equation with variable-exponent logarithmic source term,” Bol. Soc. Mat. Mexicana, vol. 29, 2023, Art. ID 77, doi: 10.1007/s40590-023-00551-x.
M. Shahrouzi, “Global existence and blow-up results for a nonlinear viscoelastic higher-order p(x)-Laplacian equation,” Int. J. Nonlinear Anal. Appl., 2025, in press, ISSN: 2008-6822 (electronic).
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, ser. Princeton Mathematical Series. Princeton: Princeton University Press, 1970, vol. 30.
B. L. T. Thanh, N. N. Trong, and T. D. Do, “Blow-up estimates for a higher-order reaction–diffusion equation with a special diffusion process,” Journal of Elliptic and Parabolic Equations, vol. 7, pp. 891–904, 2021.
B. L. T. Thanh, N. N. Trong, and T. D. Do, “Bounds on blow-up time for a higher-order non-Newtonian filtration equation,” Math. Slovaca, vol. 73, no. 3, pp. 749–760, 2023.
Similar Articles
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Svetlin Georgiev, Mohamed Majdoub, Two nonnegative solutions for two-dimensional nonlinear wave equations , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Mohamed Bouaouid, Ahmed Kajouni, Khalid Hilal, Said Melliani, A class of nonlocal impulsive differential equations with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Raúl Fierro, Sergio Pizarro, Fixed points of set-valued mappings satisfying a Banach orbital condition , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Abdelilah Azghay, Mohammed Massar, On a class of fractional \(p(\cdot,\cdot)-\)Laplacian problems with sub-supercritical nonlinearities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
<< < 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 E. Pişkin et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










