Blow-up and global existence of solutions for a higher-order reaction diffusion equation with singular potential

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2801.079

Abstract

In this work, we consider the higher-order reaction-diffusion parabolic problem with time dependent coefficient. We prove the blow-up of solutions and obtain a lower and an upper bound for the blow-up time. Finally, we investigate the existence of a global weak solution to the problem.

Keywords

Blow-up , higher-order , singular potential , global existence , reaction-diffusion

Mathematics Subject Classification:

35B44 , 35K25 , 35K67
  • Pages: 79–97
  • Date Published: 2026-01-22
  • Vol. 28 No. 1 (2026)

R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., ser. Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 2003, vol. 140.

A. B. Al’shin, M. O. Korpusov, and A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, ser. De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 2011, vol. 15, doi: 10.1515/9783110255294.

A. A. Balinsky, W. D. Evans, and R. T. Lewis, The analysis and geometry of Hardy’s inequality, ser. Universitext. Springer, Cham, 2015, doi: 10.1007/978-3-319-22870-9.

G. Butakın and E. Pişkin, “Blow up of solutions for a fourth-order reaction-diffusion equation in variable-exponent Sobolev spaces,” Filomat, vol. 38, no. 23, pp. 8225–8242, 2024.

T. D. Do, N. N. Trong, and B. L. T. Thanh, “On a higher-order reaction-diffusion equation with a special medium void via potential well method,” Taiwanese J. Math., vol. 27, no. 1, pp. 53–79, 2023, doi: 10.11650/tjm/220703.

A. Fidan, E. Pişkin, and E. Celik, “Existence, decay, and blow-up of solutions for a weighted m-biharmonic equation with nonlinear damping and source terms,” J. Funct. Spaces, pp. 1–18, 2024, Art. ID 5866792, doi: 10.1155/2024/5866792.

V. A. Galaktionov, E. L. Mitidieri, and S. I. Pohozaev, Blow-up for higher-order parabolic, hyperbolic, dispersion and Schrödinger equations, ser. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.

V. A. Galaktionov and J. L. Vázquez, “The problem of blow-up in nonlinear parabolic equations,” 2002, vol. 8, no. 2, pp. 399–433, current developments in partial differential equations (Temuco, 1999).

Y. Han, “Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity,” J. Dyn. Control Syst., vol. 27, no. 2, pp. 261–270, 2021, doi: 10.1007/s10883-020-09495-1.

Y. Han, “Blow-up phenomena for a reaction diffusion equation with special diffusion process,” Appl. Anal., vol. 101, no. 6, pp. 1971–1983, 2022, doi: 10.1080/00036811.2020.1792447.

B. Hu, Blow-up theories for semilinear parabolic equations, ser. Lecture Notes in Mathematics. Springer, Heidelberg, 2011, vol. 2018, doi: 10.1007/978-3-642-18460-4.

V. K. Kalantarov and O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types,” J. Soviet Math., vol. 10, pp. 53–70, 1978.

H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations,” Arch. Rational Mech. Anal., vol. 51, pp. 371–386, 1973.

J. Nečas, Direct Methods in the Theory of Elliptic Equations, ser. Springer Monographs in Mathematics. Heidelberg: Springer, 2012.

I. B. Omrane, S. Gala, J.-M. Kim, and M. A. Ragusa, “Logarithmically improved blow-up criterion for smooth solutions to the Leray-α-magnetohydrodynamic equations,” Arch. Math. (Brno), vol. 55, no. 1, pp. 55–68, 2019, doi: 10.1007/s00013-019-01312-5.

G. A. Philippin, “Blow-up phenomena for a class of fourth-order parabolic problems,” Proc. Amer. Math. Soc., vol. 143, no. 6, pp. 2507–2513, 2015.

E. Pişkin, Blow Up of Solutions of Evolution Equations. Pegem Publishing, 2022.

E. Pişkin and B. Okutmuştur, An Introduction to Sobolev Spaces. Bentham Science Publishers, 2021.

M. Shahrouzi, “Blow-up analysis for a class of higher-order viscoelastic inverse problem with positive initial energy and boundary feedback,” Ann. Mat. Pura Appl., vol.196, pp.1877–1886, 2017, doi: 10.1007/s10231-017-0644-5.

M. Shahrouzi, “Asymptotic behavior of solutions for a nonlinear viscoelastic higher-order p(x)-Laplacian equation with variable-exponent logarithmic source term,” Bol. Soc. Mat. Mexicana, vol. 29, 2023, Art. ID 77, doi: 10.1007/s40590-023-00551-x.

M. Shahrouzi, “Global existence and blow-up results for a nonlinear viscoelastic higher-order p(x)-Laplacian equation,” Int. J. Nonlinear Anal. Appl., 2025, in press, ISSN: 2008-6822 (electronic).

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, ser. Princeton Mathematical Series. Princeton: Princeton University Press, 1970, vol. 30.

B. L. T. Thanh, N. N. Trong, and T. D. Do, “Blow-up estimates for a higher-order reaction–diffusion equation with a special diffusion process,” Journal of Elliptic and Parabolic Equations, vol. 7, pp. 891–904, 2021.

B. L. T. Thanh, N. N. Trong, and T. D. Do, “Bounds on blow-up time for a higher-order non-Newtonian filtration equation,” Math. Slovaca, vol. 73, no. 3, pp. 749–760, 2023.

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2026-01-22

How to Cite

[1]
E. Pişkin, A. Fidan, J. Ferreira, and M. Shahrouzi, “Blow-up and global existence of solutions for a higher-order reaction diffusion equation with singular potential”, CUBO, vol. 28, no. 1, pp. 79–97, Jan. 2026.

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.