Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+
-
G. Suresh
drgsk006@kluniversity.in
-
Ch Vasavi
drgsk006@kluniversity.in
-
T.S. Rao
drgsk006@kluniversity.in
-
M.S.N. Murty
drmsn2002@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462014000100004Abstract
This paper deals with obtaining necessary and sufficient conditions for the existence of at least one Ψ-bounded solution for the linear matrix difference equation X(n + 1) = A(n)X(n)B(n) + F(n), where F(n) is a Ψ-summable matrix valued function on Z+. Finally, we prove a result relating to the asymptotic behavior of the Ψ-bounded solutions of this equation on Z+.
Keywords
Similar Articles
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- R. Nithya Raj, R. Sundara Rajan, İsmail Naci Cangül, The metric dimension of cyclic hexagonal chain honeycomb triangular mesh and pencil graphs , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Mahdi Zreik, On the approximation of the δ-shell interaction for the 3-D Dirac operator , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Sever Silvestru Dragomir, Eder Kikianty, Perturbed weighted trapezoid inequalities for convex functions with applications , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
You may also start an advanced similarity search for this article.