Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+
-
G. Suresh
drgsk006@kluniversity.in
-
Ch Vasavi
drgsk006@kluniversity.in
-
T.S. Rao
drgsk006@kluniversity.in
-
M.S.N. Murty
drmsn2002@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462014000100004Abstract
This paper deals with obtaining necessary and sufficient conditions for the existence of at least one Ψ-bounded solution for the linear matrix difference equation X(n + 1) = A(n)X(n)B(n) + F(n), where F(n) is a Ψ-summable matrix valued function on Z+. Finally, we prove a result relating to the asymptotic behavior of the Ψ-bounded solutions of this equation on Z+.
Keywords
Similar Articles
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Hassan Sedaghat, Global Attractivity, Oscillations and Chaos in A Class of Nonlinear, Second Order Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Bruno Costa, Spectral Methods for Partial Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- L. K. Kikina, I.P. Stavroulakis, A Survey on the Oscillation of Solutions of First Order Delay Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- E. A. Grove, E. Lapierre, W. Tikjha, On the global behavior of ð‘¥áµ¤â‚Šâ‚ = |ð‘¥áµ¤|− ð‘¦áµ¤ − 1 and ð‘¦áµ¤â‚Šâ‚ = ð‘¥áµ¤ +|ð‘¦áµ¤| , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- M.H. Saleh, D.Sh. Mohammed, Numerical solution of singular and non singular integral equations , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Fabrizio Cuccu, Petar Popivanov, Giovanni Porru, Estimates for solutions to nonlinear degenerate elliptic equations , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











