Nonnegative solutions of quasilinear elliptic problems with sublinear indefinite nonlinearity
-
Weihui Wang
335348332@qq.com
-
Zuodong Yang
zdyang_jin@263.net
Downloads
DOI:
https://doi.org/10.4067/S0719-06462013000200002Abstract
We study the existence, nonexistence and multiplicity of nonnegative solutions for the quasilinear elliptic problem

where Ω is a bounded domain in RN, λ > 0 is a parameter, △p = div(|∇u|p−2∇u) is the p−Laplace operator of u, 1 < p < N, 0 < q < p − 1 < r ≤ p∗ − 1, a(x), b(x) are bounded functions, the coefficient b(x) is assumed to be nonnegative and a(x) is allowed to change sign. The results of the semilinear equations are extended to the quasilinear problem.
Keywords
Most read articles by the same author(s)
- Fang Li, Zuodong Yang, Existence of blow-up solutions for quasilinear elliptic equation with nonlinear gradient term. , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Yuan Zhang, Zuodong Yang, Existence of Entire Solutions for Quasilinear Elliptic Systems under Keller-Osserman Condition , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
Similar Articles
- U. Guerrero-Valadez, H. Torres-López, A. G. Zamora, Deformaciones de variedades abelianas con un grupo de automorfismos , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Sergio Amat, Sonia Busquier, David Levin, Juan C. Trillo, Esquemas de subdivisión no lineales: 25 años de historia a través de 75 contribuciones , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Bach Do, G. Stacey Staples, Zeros of cubic polynomials in zeon algebra , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Zahoor Ahmad Rather, Rais Ahmad, Inertial viscosity Mann-type subgradient extragradient algorithms for solving variational inequality and fixed point problems in real Hilbert spaces , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
- Fethi Soltani, Maher Aloui, Hausdorff operators associated with the linear canonical Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.










