On the Poisson‘s equation −∆u = ∞
-
Carlos Cesar Aranda
carloscesar.aranda@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462013000100010Abstract
Let Ω ⊂ RN be a bounded domain. We proof the existence of a bounded solution of the Poisson‘s equation −∆u = ∞ on Ω.
Keywords
Most read articles by the same author(s)
- Carlos Cesar Aranda, Spacetime singularity, singular bounds and compactness for solutions of the Poisson‘s equation , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
Similar Articles
- Raymond Mortini, A nice asymptotic reproducing kernel , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Anthony Sofo, Families of skew linear harmonic Euler sums involving some parameters , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Nemri Akram, Retraction Note: Heisenberg-type uncertainty principle for the second \(q\)-Bargmann transform on the unit disk , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Juan D. Cardona-Gutierrez, Julio C. Ramos-Fernández, Harold Vacca-González, Compactness of the difference of weighted composition operators between weighted \(l^p\) spaces , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Aníbal Coronel, Fernando Huancas, Esperanza Lozada, Jorge Torres, Análisis matemático de un problema inverso para un sistema de reacción-difusión originado en epidemiología , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Sergio Amat, Sonia Busquier, David Levin, Juan C. Trillo, Esquemas de subdivisión no lineales: 25 años de historia a través de 75 contribuciones , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2013-03-01
How to Cite
[1]
C. C. Aranda, “On the Poisson‘s equation −∆u = ∞”, CUBO, vol. 15, no. 1, pp. 151–158, Mar. 2013.
Issue
Section
Articles











