On the Poisson‘s equation −∆u = ∞
-
Carlos Cesar Aranda
carloscesar.aranda@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462013000100010Abstract
Let Ω ⊂ RN be a bounded domain. We proof the existence of a bounded solution of the Poisson‘s equation −∆u = ∞ on Ω.
Keywords
Most read articles by the same author(s)
- Carlos Cesar Aranda, Spacetime singularity, singular bounds and compactness for solutions of the Poisson‘s equation , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
Similar Articles
- Brahim Moussa, Ismaël Nyanquini, Stanislas Ouaro, Weak solutions of a discrete Robin problem involving the anisotropic \(\vec{p}\)-mean curvature operator , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
- Zahoor Ahmad Rather, Rais Ahmad, Inertial viscosity Mann-type subgradient extragradient algorithms for solving variational inequality and fixed point problems in real Hilbert spaces , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
- Fethi Soltani, Maher Aloui, Hausdorff operators associated with the linear canonical Sturm-Liouville transform , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2013-03-01
How to Cite
[1]
C. C. Aranda, “On the Poisson‘s equation −∆u = ∞”, CUBO, vol. 15, no. 1, pp. 151–158, Mar. 2013.
Issue
Section
Articles










