Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
-
Mouez Dimassi
dimassi@math.univ-paris13.fr
-
Maher Zerzeri
zerzeri@math.univ-paris13.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000100004Abstract
In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schr¨odinger operators. We give a weak and pointwise asymptotic expansions in powers of ℎ of the derivative of the spectral shift function corresponding to the pair (P(ℎ) = P0 + ðœ‘(ℎð‘¥), P0 = −∆ + V(ð‘¥)), where ðœ‘(ð‘¥) ∈ âˆâˆž(â„n, â„) is a decreasing function, O(|ð‘¥|−δ ) for some δ > n and ℎ is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice Γ in â„n. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(ℎ).
Keywords
Similar Articles
- William F. Trench, Simplification and Strengthening of Weyl's Definition of Asymptotic Equal Distribution of Two Families of Finite Sets , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- George A. Anastassiou, A New Expansion Formula , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Juhani Riihentaus, On an inequality related to the radial growth of subharmonic functions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Anthony Sofo, Families of skew linear harmonic Euler sums involving some parameters , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Rigoberto Medina, Manuel Pinto, Conditionally integrable perturbations of linear differential systems , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- G. Suresh, Ch Vasavi, T.S. Rao, M.S.N. Murty, Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+ , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Slawomir Kolodziej, The complex Monge-Ampére equation and methods of pluripotential theory , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Jan Brandts, Computation of Invariant Subspaces of Large and Sparse Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.










