Spectral shift function for slowly varying perturbation of periodic Schrödinger operators
-
Mouez Dimassi
dimassi@math.univ-paris13.fr
-
Maher Zerzeri
zerzeri@math.univ-paris13.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000100004Abstract
In this paper we study the asymptotic expansion of the spectral shift function for the slowly varying perturbations of periodic Schr¨odinger operators. We give a weak and pointwise asymptotic expansions in powers of ℎ of the derivative of the spectral shift function corresponding to the pair (P(ℎ) = P0 + ðœ‘(ℎð‘¥), P0 = −∆ + V(ð‘¥)), where ðœ‘(ð‘¥) ∈ âˆâˆž(â„n, â„) is a decreasing function, O(|ð‘¥|−δ ) for some δ > n and ℎ is a small positive parameter. Here the potential V is real, smooth and periodic with respect to a lattice Γ in â„n. To prove the pointwise asymptotic expansion of the spectral shift function, we establish a limiting absorption Theorem for P(ℎ).
Keywords
Similar Articles
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Fatima Si bachir, Saïd Abbas, Maamar Benbachir, Mouffak Benchohra, Gaston M. N‘Guérékata, Existence and attractivity results for \(\psi\)-Hilfer hybrid fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- C.M. Kirk, A Localized Heat Source Undergoing Periodic Motion: Analysis of Blow-Up and a Numerical Solution , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- László Kapolyi, Network Oligopolies with Multiple Markets , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Abdi Oli, Kelelaw Tilahun, G. V. Reddy, The Multivariable Aleph-function involving the Generalized Mellin-Barnes Contour Integrals , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- K. Gürlebeck, J. Morais, On mapping properties of monogenic functions , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
<< < 9 10 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.











