On Rellich‘s Lemma, the Poincaré inequality, and Friedrichs extension of an operator on complex spaces
-
Chia-chi Tung
imggtn14@outlook.com
-
Pier Domenico Lamberti
lamberti@math.unipd.it
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200265Abstract
This paper is mainly concerned with: (i) a generalization of the Rellich‘s Lemma to a Riemann subdomain of a complex space, (ii) the Poincaré inequality, and (iii) Friedrichs extension of a Schrödinger type operator. Applications to the eigenfunction expansion problem associated to the modified Laplacian are also given.
Keywords
A. Andreotti and W. Stoll, Analytic and algebraic dependence of meromorphic functions, Lecture Notes in Mathematics, vol. 234, Berlin-New York: Springer-Verlag, 1971.
D. Barlet, Cycles analytiques complexes. I. Théorèmes de préparation des cycles, [Complex analytic cycles. I. Preparation theorems for cycles], Cours Spécialisés, vol. 22, Paris: Société Mathématique de France, 2014.
H. Behnke and H. Grauert, “Analysis in non-compact complex spaces”, in Proceedings of the Conference on Analytic functions (Edit. Behnke, H. and H. Grauert), pp. 11-44, Princeton Univ. Press, Princeton, N.J., 1960.
R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. I, New York: Interscience Publishers, 1962.
J. Deny and J. L. Lions, “Les espaces du type de Beppo Levi”, Ann. Inst. Fourier (Grenoble), vol. 5, no. 195, pp. 305-370, 1954.
L. C. Evans, Partial Differential Equations, vol. 19, Providence RI: American Mathematical Society, 1998.
F. Galaz-Fontes, “On Friedrichs inequality and Rellich‘s theorem”, J. Math. Anal. Appl., vol. 145, no. 2, pp. 516-523, 1990.
H. Grauert and R. Remmert, Theory of Stein Spaces, Grundlehren der Mathematischen Wissenschaften, vol. 236, Berlin-Heidelberg-New York: Springer-Verlag, 1979.
H. Grauert and R. Remmert, Coherent Analytic Sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 265, Springer, Berlin-Heidelberg-New York: Springer-Verlag, 1984.
Ph. Griffiths and J. Harris, Principles of algebraic geometry, New York: John Wiley & Sons, 1994.
E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York, Providence, RI: American Mathematical Society, 1999.
M. Melgaard and G. Rozenblum, “Schrödinger operators with singular potentials”, Stationary Partial Differential Equations (Edit. M. Chipot and P. Quittner), vol. II, Handb. Differ. Equ., Amsterdam, North-Holland: Elsevier, 2005, pp. 407-517.
R. Narasimhan, Analysis on Real and Complex Manifold, Advanced Studies in Pure Mathematics, vol. 1, Paris: Masson & Cie, Éditeurs, Amsterdam: North-Holland Publishing Co., New York: American Elsevier Publishing Co., 1968.
R. S. Palais, Seminar on the Atiyah-Singer Index Theorem, Annals of Mathematics Studies, No. 57, Princeton, New Jersey: Princeton University Press, 1967.
F. Rellich, “Ein Satz u ̈ber mittlere Konvergenz”, Nachr. Ges. Wiss. G ̈ottingen, Math.-Phys. Kl, pp. 30-35, 1930.
F. Riesz and B. Sz.-Nagy, Functional Analysis, New York: Frederick Ungar Publishing Co., 1955.
J. Ruppenthal, “Analysis on singular complex spaces”, Habilitationsschrift, Fachgruppe Mathematik und Informatik, Bergische Universität Wuppertal, 2011.
C. Tung, “The first main theorem of value distribution on complex spaces”, Atti Accad. Naz. Lincei Mem., Cl. Sci. Fis. Mat. Natur. Sez. Ia, vol. 15, no. 4, pp. 91-263, 1979.
C. Tung, “Semi-harmonicity, integral means and Euler type vector fields”19, Adv. Appl. Clifford Algebr., vol. 17, no. 3, pp. 555-573, 2007.
C. Tung, “On the weak solvability of Schrödinger type equations with boundary conditions”, Math. Rep. (Bucur.), vol. 15 (65), no. 4, pp. 497-510, 2013.
C. Tung, “On Wirtinger derivations, the adjoint of the operator ∂, and applications”. Izv. Ross. Akad. Nauk Ser. Mat., vol. 82, no. 6, pp. 172-199, 2018; translation in Izv. Math., vol. 82, no. 6, pp. 1239-1264, 2018.
R. O. Wells, Differential Analysis on Complex Manifolds, Third edition, Graduate Texts in Mathematics, vol. 65, New York: Springer, 2008.
Most read articles by the same author(s)
- Chia-chi Tung, On Semisubmedian Functions and Weak Plurisubharmonicity , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
Similar Articles
- Elke Wolf, Differences of weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Juan D. Cardona-Gutierrez, Julio C. Ramos-Fernández, Harold Vacca-González, Compactness of the difference of weighted composition operators between weighted \(l^p\) spaces , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Rinko Shinzato, Wataru Takahashi, A Strong Convergence Theorem by a New Hybrid Method for an Equilibrium Problem with Nonlinear Mappings in a Hilbert Space , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Elke Wolf, Integral composition operators between weighted Bergman spaces and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Elke Wolf, Isometric weighted composition operators on weighted Banach spaces of holomorphic functions defined on the unit ball of a complex Banach space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Cong He, Jingchun Chen, Vlasov-Poisson equation in weighted Sobolev space \(W^{m, p}(w)\) , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Gabriel M. Antón Marval, René E. Castillo, Julio C. Ramos-Fernández, Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Shamsur Rahman, Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.