More on approximate operators
-
Philip J. Maher
p.maher@mdx.ac.uk
-
Mohammad Sal Moslehian
moslehian@ferdowsi.um.ac.ir
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000100009Abstract
This note is a continuation of the work on (p,Ñ”)–approximate operators studied by Mirzavaziri, Miura and Moslehian. [4]. We investigate approximate partial isometries and approximate generalized inverses. We also prove that if T is an invertible contraction satisfying . Then there exists a partial isometry V such that ”–T − V”– < KÑ” for K > 0.
Keywords
Similar Articles
- Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- Heriberto Román, Arturo Flores, On the level-convergence and fuzzy integration , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
- Mercedes Fernández Miranda, Elementos regulares de una C• álgebra , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
- P. Jeyanthi, P. Nalayini, T. Noiri, Pre-regular \(sp\)-open sets in topological spaces , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Sushanta Kumar Mohanta, Common Fixed Point Results in C∗-Algebra Valued b-Metric Spaces Via Digraphs , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
<< < 14 15 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.