Module amenability for Banach modules
-
D. Ebrahimi Bagha
d.ebrahimibagha@iauctb.ac.ir
-
M. Amini
mamini@modares.ac.ir
Downloads
DOI:
https://doi.org/10.4067/S0719-06462011000200007Abstract
We study the module amenability of Banach modules. This is a natural generalization of Johnson‘s amenability of Banach algebras. As an example we show that for a discrete abelian group G, â„“p(G) is amenable as an â„“1 (G)-module if and only if G is amenable, where â„“1 (G) is a Banach algebra with pointwise multiplication.
Keywords
Similar Articles
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi, On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Abdoul Aziz Kalifa Dianda, Khalil Ezzinbi, Almost automorphic solutions for some nonautonomous evolution equations under the light of integrable dichotomy , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2011-06-01
How to Cite
[1]
D. Ebrahimi Bagha and M. Amini, “Module amenability for Banach modules”, CUBO, vol. 13, no. 2, pp. 127–137, Jun. 2011.
Issue
Section
Articles