Existence results for a class of local and nonlocal nonlinear elliptic problems
-
Said Ait Temghart
saidotmghart@gmail.com
-
Chakir Allalou
chakir.allalou@yahoo.fr
-
Adil Abbassi
abbassi91@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.001Abstract
In this paper, we study the \(p\)-Laplacian problems in the case where \(p\) depends on the solution itself. We consider two situations, when \(p\) is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation
\[\begin{cases}-\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p(u)-2}\nabla u)+|u|^{p(u)-2}u=f&\mbox{in}\; \Omega\\u=0& \mbox{on}\; \partial\Omega,\end{cases}\]
and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).
Keywords
Mathematics Subject Classification:
A. Abbassi, C. Allalou and A. Kassidi, “Topological degree methods for a Neumann problem governed by nonlinear elliptic equation”, Moroccan J. Pure and Appl. Anal., vol. 6, no. 2, pp. 231–242, 2020.
C. Allalou, K. Hilal and S. A. Temghart, “Existence of weak solutions for some local and nonlocal p-Laplacian problem”, J. Elliptic Parabol. Equ., vol. 8, no. 1, pp. 151–169, 2022.
B. Andreianov, M. Bendahmane and S. Ouaro, “Structural stability for variable exponent elliptic problems. II. The p(u)-Laplacian and coupled problems”, Nonlinear Anal., vol. 72, no. 12, pp. 4649–4660, 2010.
L. Barbu and G. Moroşanu, “Full description of the eigenvalue set of the Steklov (p,q)- Laplacian”, J. Differential Equations, vol. 290, pp. 1–16, 2021.
P. Blomgren, T. F. Chan, P. Mulet and C. K. Wong, “Total variation image restoration: Numerical methods and extensions”, in Proceedings of the IEEE International Conference on Image Processing, 1997, vol. 3, Piscataway, pp. 384–387.
E. Bollt, R. Chartrand, S. Esedoglu, P. Schultz and K. R. Vixie, “Graduated, adaptive image denoising: local compromise between total-variation and isotropic diffusion”, Adv. Comput. Math., vol. 31, no. 1–3, pp. 61–85, 2007.
M. Chipot and H. B. de Oliveira, “Some results on the p(u)-Laplacian problem”, vol. 375, no. 1–2, Math. Ann., pp. 283–306, 2019.
M. Chipot, Elliptic equations: an introductory course, Basel: Birkhäuser, 2009.
D. E. Edmunds, J. Lang and O. Mendez, Differential operators on spaces of variable integrability, New Jersey: World Scientific, 2014.
X. Fan, Q. Zhang and D. Zhao, “Eigenvalues of p(x)-Laplacian Dirichlet problem”, J. Math. Anal Appl., vol. 302, no. 2, pp. 306–317, 2005.
X. L. Fan and D. Zhao, “On the generalized Orlicz-Sobolev space W`^k,p(x) (Ω)”, J. Gansu Educ. College, no. 1, pp. 1–6, 1998.
R. Glowinski and R. Marrocco, “Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualit´é, d’une classe de probl`emes de Dirichlet non linéaires”, Rev. Franc ̧aise Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Num ́er, vol. 9, no. R–2, pp. 41–76, 1975.
O. Kováˇcik and J. Rákosník, “On spaces L^p(x)(Ω) and W^k,p(x)(Ω)”, Czechoslovak Math. J., vol. 41, no. 4, pp. 592–618, 1991.
S. Ouaro and N. Sawadogo, “Nonlinear elliptic p(u)-Laplacian problem with Fourier boundary condition”, Cubo, vol. 22, no. 1, pp. 85–124, 2020.
S. Ouaro and N. Sawadogo, “Structural stability for nonlinear p(u)-Laplacian problem with Fourier boundary condition”, Gulf J. Math., vol. 11, no. 1, pp. 1–37, 2021.
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovˇs, Nonlinear analysis—theory and methods, Springer Monographs in Mathematics, Cham: Springer, 2019.
J. Türola, “Image denoising using directional adaptive variable exponents model”, J. Math. Imaging Vision, vol. 57, no. 1, pp. 56–74, 2017.
V. V. E. Zhikov, “On the technique for passing to the limit in nonlinear elliptic equations”, Funct. Anal. Appl., vol. 43, no. 2, pp. 96–112, 2009.
Most read articles by the same author(s)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- Ziqi Sun, Conjectures in Inverse Boundary Value Problems for Quasilinear Elliptic Equations , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Aparajita Dasgupta, M.W. Wong, The semigroup and the inverse of the Laplacian on the Heisenberg group , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Weihui Wang, Zuodong Yang, Nonnegative solutions of quasilinear elliptic problems with sublinear indefinite nonlinearity , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Joachim Toft, Pseudo-differential operators with smooth symbols on modulation spaces , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Gabriel M. Antón Marval, René E. Castillo, Julio C. Ramos-Fernández, Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Elena Cordero, Davide Zucco, Strichartz estimates for the Schrödinger equation , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Elke Wolf, Differences of weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. A. Temghart et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.