On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space
-
Richard Delanghe
Richard.Delanghe@UGent.be
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000200010Abstract
Let for s ∈ {0, 1, ..., m + 1} (m ≥ 2),
be the space of s-vectors in the Clifford algebra IR0,m+1 constructed over the quadratic vector space IR0,m+1 and let r, p, q, ∈ IN be such that 0 ≤ r ≤ m + 1, p < q and r + 2q ≤ m + 1. The associated linear system of first order partial differential equations derived from the equation ∂xW = 0 where W is
-valued and ∂x is the Dirac operator in IRm+1, is called a generalized Moisil-Théodoresco system of type (r, p, q) in IRm+1. For k ∈ N, k ≥ 1,
, denotes the space of
-valued homogeneous polynomials Wk of degree k in IRm+1 satisfying ∂xWk = 0. A characterization of Wk ∈
is given in terms of a harmonic potential Hk+1 belonging to a subclass of
-valued solid harmonics of degree (k + 1) in IRm+1. Furthermore, it is proved that each Wk ∈
admits a primitive Wk+1 ∈
. Special attention is paid to the lower dimensional cases IR3 and IR4. In particular, a method is developed for constructing bases for the spaces
, r being even.
Keywords
Similar Articles
- Juan D. Cardona-Gutierrez, Julio C. Ramos-Fernández, Harold Vacca-González, Compactness of the difference of weighted composition operators between weighted \(l^p\) spaces , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Aníbal Coronel, Fernando Huancas, Esperanza Lozada, Jorge Torres, Análisis matemático de un problema inverso para un sistema de reacción-difusión originado en epidemiología , CUBO, A Mathematical Journal: In Press
- Sergio Amat, Sonia Busquier, David Levin, Juan C. Trillo, Esquemas de subdivisión no lineales: 25 años de historia a través de 75 contribuciones , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.











