Boundary Stabilization of the Transmission Problem for the Bernoulli-Euler Plate Equation
- 
							
								
							
								Kaïs Ammari
							
							
															
									
									
									kais.ammari@fsm.rnu.tn
									
								
													
							
						 - 
							
								
							
								Georgi Vodev
							
							
															
									
									
									vodev@math.univ-nantes.fr
									
								
													
							
						 
Downloads
Abstract
In this paper we consider a boundary stabilization problem for the transmission Bernoulli-Euler plate equation. We prove uniform exponential energy decay under natural conditions.
Keywords
Most read articles by the same author(s)
- Fernando Cardoso, Claudio Cuevas, Georgi Vodev, Dispersive Estimates for the Schrödinger Equation with Potentials of Critical Regularity , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
 - Georgi Vodev, Resonances in the Euclidean Scattering , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
 - Georgi Vodev, Semi-Classical Propagation of Singularities on Riemannian Manifolds without Boundary and Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
 
Similar Articles
- Felipe I. Flores, Una nota sobre cocientes finito-dimensionales y el problema de continuidad automática para álgebras de convolución torcida , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
 
You may also start an advanced similarity search for this article.
Downloads
			Download data is not yet available.
		
	Published
																			2009-12-01
																	
				How to Cite
[1]
K. Ammari and G. Vodev, “Boundary Stabilization of the Transmission Problem for the Bernoulli-Euler Plate Equation”, CUBO, vol. 11, no. 5, pp. 39–49, Dec. 2009.
Issue
Section
								Articles
							
						
						










