Optical Tomography for Media with Variable Index of Refraction
- 
							
								
							
								Stephen McDowall
							
							
															
									
									
									stephen.mcdowall@wwu.edu
									
								
													
							
						 
Downloads
Abstract
Optical tomography is the use of near-infrared light to determine the optical absorption and scattering properties of a medium M âŠ‚ â„n. If the refractive index is constant throughout the medium, the steady-state case is modeled by the stationary linear transport equation in terms of the Euclidean metric and photons which do not get absorbed or scatter travel along straight lines. In this expository article we consider the case of variable refractive index where the dynamics are modeled by writing the transport equation in terms of a Riemannian metric; in the absence of interaction, photons follow the geodesics of this metric. The data
one has is the measurement of the out-going flux of photons leaving the body at the boundary. This may be knowledge of both the locations and directions of the exiting photons (fully angularly resolved measurements) or some kind of average over direction (angularly averaged measurements). We discuss the results known for both types of measurements in all spatial dimensions.
Keywords
Similar Articles
- Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
 - N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
 - Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
 - Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
 - Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
 - Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
 - Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
 - Raymond Mortini, A nice asymptotic reproducing kernel , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
 - Anthony Sofo, Families of skew linear harmonic Euler sums involving some parameters , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
 - Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
 
<< < 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
						










