Optical Tomography for Media with Variable Index of Refraction
- 
							
								
							
								Stephen McDowall
							
							
															
									
									
									stephen.mcdowall@wwu.edu
									
								
													
							
						 
Downloads
Abstract
Optical tomography is the use of near-infrared light to determine the optical absorption and scattering properties of a medium M âŠ‚ â„n. If the refractive index is constant throughout the medium, the steady-state case is modeled by the stationary linear transport equation in terms of the Euclidean metric and photons which do not get absorbed or scatter travel along straight lines. In this expository article we consider the case of variable refractive index where the dynamics are modeled by writing the transport equation in terms of a Riemannian metric; in the absence of interaction, photons follow the geodesics of this metric. The data
one has is the measurement of the out-going flux of photons leaving the body at the boundary. This may be knowledge of both the locations and directions of the exiting photons (fully angularly resolved measurements) or some kind of average over direction (angularly averaged measurements). We discuss the results known for both types of measurements in all spatial dimensions.
Keywords
Similar Articles
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 - Franco Fagnola, Damiano Poletti, Emanuela Sasso, Energy transfer in open quantum systems weakly coupled with two reservoirs , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
 - Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
 - Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
 - Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
 - Shamsur Rahman, Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
 - Fritz Gesztesy, Isaac Michael, Michael M. H. Pang, Optimality of constants in power-weighted Birman–Hardy–Rellich-Type inequalities with logarithmic refinements , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
 - Masaya Kawamura, On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
 - Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
 - N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
 
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
						










