Towards accurate artificial boundary conditions for nonlinear PDEs through examples
-
Xavier Antoine
Xavier.Antoine@iecn.u-nancy.fr
-
Christophe Besse
Christophe.Besse@math.univ-lille1.fr
-
Jérémie Szeftel
jszeftel@math.princeton.edu
Downloads
Abstract
The aim of this paper is to give a comprehensive review of current developments related to the derivation of artificial boundary conditions for nonlinear partial differential equations. The essential tools to build such boundary conditions are based on pseudodifferential and paradifferential calculus. We present various derivations and compare them. Some numerical results illustrate their respective accuracy and analyze the potential of each technique.
Keywords
Similar Articles
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Shruti A. Kalloli, José Vanterler da C. Sousa, Kishor D. Kucche, On the \(\Phi\)-Hilfer iterative fractional differential equations , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Juan D. Cardona-Gutierrez, Julio C. Ramos-Fernández, Harold Vacca-González, Compactness of the difference of weighted composition operators between weighted \(l^p\) spaces , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Rubén A. Hidalgo, Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.











