Infinitesimally tight Lagrangian submanifolds in adjoint orbits: A classification of real forms

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2703.523

Abstract

In this paper, we study the geometry of real flag manifolds within complex flag manifolds, focusing on their Lagrangian properties. We prove that the natural immersion of real flag manifolds into their corresponding complex flag manifolds can be characterized as infinitesimally tight Lagrangian submanifolds with respect to the Kirillov-Kostant-Souriau (KKS) symplectic form. This property of tightness provides a significant geometric constraint, indicating that the submanifolds are locally minimal and cannot be deformed infinitesimally to reduce their volume further in the ambient space. We further provide a comprehensive classification of these immersions, detailing the conditions under which such submanifolds exist across various symmetric pairs. This classification elucidates the relationship between the structure of the real flags and the associated complex flags, contributing to a deeper understanding of the interplay between symplectic geometry and representation theory.

Keywords

Flag manifolds , homogeneous space , Lagrangian submanifolds , infinitesimally tight

Mathematics Subject Classification:

14M15 , 22F30 , 53D12
  • Pages: 523–551
  • Date Published: 2025-11-21
  • In Press

D. V. Alekseevsky, “Flag manifolds,” 1997, vol. 6(14), pp. 3–35, 11th Yugoslav Geometrical Seminar (Divčibare, 1996).

D. Alekseevsky and A. Arvanitoyeorgos, “Riemannian flag manifolds with homogeneous geodesics,” Trans. Amer. Math. Soc., vol. 359, no. 8, pp. 3769–3789, 2007, doi: 10.1090/S0002-9947-07-04277-8.

A. Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, ser. Student Mathematical Library. American Mathematical Society, Providence, RI, 2003, vol. 22, doi: 10.1090/stml/022.

A. Arvanitoyeorgos, “Geometry of flag manifolds,” Int. J. of Geometric Methods in Modern Physics, vol. 3, no. 5, pp. 957–974, 2006.

J. Báez and L. A. B. San Martin, “Deformations of adjoint orbits for semisimple Lie algebras and Lagrangian submanifolds,” Differential Geom. Appl., vol. 75, 2021, Art. ID 101719, doi: 10.1016/j.difgeo.2021.101719.

L. Bedulli and A. Gori, “Homogeneous Lagrangian submanifolds,” Comm. Anal. Geom., vol. 16, no. 3, pp. 591–615, 2008, doi: 10.4310/cag.2008.v16.n3.a5.

I. N. Bernšteĭn, I. M. Gel’fand, and S. I. Gel’fand, “Schubert cells, and the cohomology of the spaces G/P,” Uspehi Mat. Nauk, vol. 28, no. 3(171), pp. 3–26, 1973.

A. L. Besse, Einstein manifolds, ser. Classics in Mathematics. reprint of the 1987 edition. Springer-Verlag, Berlin, 2008,

L. Casian and R. J. Stanton, “Schubert cells and representation theory,” Invent. Math., vol. 137, no. 3, pp. 461–539, 1999, doi: 10.1007/s002220050334.

E. Gasparim, L. Grama, and L. A. B. San Martin, “Symplectic Lefschetz fibrations on adjoint orbits,” Forum Math., vol. 28, no. 5, pp. 967–979, 2016, doi: 10.1515/forum-2015-0039.

E. Gasparim, L. Grama, and L. A. B. San Martin, “Adjoint orbits of semi-simple Lie groups and Lagrangian submanifolds,” Proc. Edinb. Math. Soc. (2), vol. 60, no. 2, pp. 361–385, 2017, doi: 10.1017/S0013091516000286.

E. Gasparim and L. A. B. San Martin, “Morse functions and real Lagrangian thimbles on adjoint orbits,” J. Topol. Anal., vol. 17, no. 3, pp. 653–679, 2025, doi: 10.1142/S1793525323500395.

E. Gasparim, L. A. B. San Martin, and F. Valencia, “Infinitesimally tight Lagrangian orbits,” Math. Z., vol. 297, no. 3-4, pp. 1877–1898, 2021, doi: 10.1007/s00209-020-02583-9.

C. Gorodski and F. Podestà, “Tight Lagrangian homology spheres in compact homogeneous Kähler manifolds,” Israel J. Math., vol. 206, no. 1, pp. 413–429, 2015, doi: 10.1007/s11856-014-1145-5.

H. Iriyeh and T. Sakai, “Tight Lagrangian surfaces in S2 ×S2,” Geom. Dedicata, vol. 145, pp. 1–17, 2010.

N. Jacobson, Lie algebras. 1962 original. Dover Publications, Inc., New York, 1979, republication of the

Y.-G. Oh, “Tight Lagrangian submanifolds in CPn,” Math. Z., vol. 207, no. 3, pp. 409–416, 1991, doi: 10.1007/BF02571398.

Y.-G. Oh, “Volume minimization of Lagrangian submanifolds under Hamiltonian deformations,” Math. Z., vol. 212, no. 2, pp. 175–192, 1993, doi: 10.1007/BF02571651.

Y. Ohnita, “Geometry of R-spaces canonically embedded in Kähler C-spaces as Lagrangian submanifolds,” in Proceedings of the 22nd International Workshop on Differential Geometry of Submanifolds in Symmetric Spaces & the 17th RIRCM-OCAMI Joint Differential Geometry

Workshop, 2019, pp. 115–132.

L. Rabelo and L. A. B. San Martin, “Cellular homology of real flag manifolds,” Indag. Math. (N.S.), vol. 30, no. 5, pp. 745–772, 2019.

L. A. B. San Martin, Álgebras de Lie, 2nd ed. Campinas, SP, Brasil: Editora da Unicamp, 2010.

L. A. B. San Martin, Grupos de Lie. Campinas, SP, Brasil: Editora da Unicamp, 2016.

J.-P. Serre, Complex semisimple Lie algebras, ser. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2001, doi: 10.1007/978-3-642-56884-8.

P. B. Zwart and W. M. Boothby, “On compact, homogeneous symplectic manifolds,” Ann. Inst. Fourier (Grenoble), vol. 30, no. 1, pp. 129–157, 1980, doi: 10.5802/aif.778.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2025-11-21

How to Cite

[1]
J. Báez and L. A. B. San Martin, “Infinitesimally tight Lagrangian submanifolds in adjoint orbits: A classification of real forms”, CUBO, pp. 523–551, Nov. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.