Submanifolds of a (k,μ)-contact manifold
-
C. S. Bagewadi
prof_bagewadi@yahoo.co.in
-
M. S. Siddesha
mssiddesha@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462016000100005Abstract
The object of the present paper is to study submanifolds of (k,μ)-contact manifolds. We find the necessary and sufficient conditions for a submanifolds of (k,μ)-contact manifolds to be invariant and anti-invariant. Also, we examine the integrability of the distributions involved in the definition of CR-submanifolds of (k, μ)-contact manifolds.
Keywords
Similar Articles
- A.A. Shaikh, C.S. Bagewadi, On ð˜•(ð‘˜)-Contact Metric Manifolds , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- M.S. Siddesha, C.S. Bagewadi, D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Vandana, Rajeev Budhiraja, Aliya Naaz Siddiqui Diop, Curvature properties of \(\alpha\)-cosymplectic manifolds with \(\ast\)-\(\eta\)-Ricci-Yamabe solitons , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Patrick Eberlein, Left invariant geometry of Lie groups , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Mohd Danish Siddiqi, Aliya Naaz Siddiqui, Ali H. Hakami, M. Hasan, Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Shamsur Rahman, Some results on the geometry of warped product CR-submanifolds in quasi-Sasakian manifold , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- D. G. Prakasha, H. Harish, P. Veeresha, Venkatesha, The Zamkovoy canonical paracontact connection on a para-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Vishnuvardhana S.V., Venkatesha, Results on para-Sasakian manifold admitting a quarter symmetric metric connection , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Bhawana Chaube, S. K. Chanyal, Quarter-symmetric metric connection on a p-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2016-12-01
How to Cite
[1]
C. S. Bagewadi and M. S. Siddesha, “Submanifolds of a (k,μ)-contact manifold”, CUBO, vol. 18, no. 1, pp. 59–68, Dec. 2016.
Issue
Section
Articles