Infinitesimally tight Lagrangian submanifolds in adjoint orbits: A classification of real forms
-
Jhoan Báez
sbaez@cmm.uchile.cl
-
Luiz A. B. San Martin
smartin@ime.unicamp.br
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.523Abstract
In this paper, we study the geometry of real flag manifolds within complex flag manifolds, focusing on their Lagrangian properties. We prove that the natural immersion of real flag manifolds into their corresponding complex flag manifolds can be characterized as infinitesimally tight Lagrangian submanifolds with respect to the Kirillov-Kostant-Souriau (KKS) symplectic form. This property of tightness provides a significant geometric constraint, indicating that the submanifolds are locally minimal and cannot be deformed infinitesimally to reduce their volume further in the ambient space. We further provide a comprehensive classification of these immersions, detailing the conditions under which such submanifolds exist across various symmetric pairs. This classification elucidates the relationship between the structure of the real flags and the associated complex flags, contributing to a deeper understanding of the interplay between symplectic geometry and representation theory.
Keywords
Mathematics Subject Classification:
D. V. Alekseevsky, “Flag manifolds,” 1997, vol. 6(14), pp. 3–35, 11th Yugoslav Geometrical Seminar (Divčibare, 1996).
D. Alekseevsky and A. Arvanitoyeorgos, “Riemannian flag manifolds with homogeneous geodesics,” Trans. Amer. Math. Soc., vol. 359, no. 8, pp. 3769–3789, 2007, doi: 10.1090/S0002-9947-07-04277-8.
A. Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, ser. Student Mathematical Library. American Mathematical Society, Providence, RI, 2003, vol. 22, doi: 10.1090/stml/022.
A. Arvanitoyeorgos, “Geometry of flag manifolds,” Int. J. of Geometric Methods in Modern Physics, vol. 3, no. 5, pp. 957–974, 2006.
J. Báez and L. A. B. San Martin, “Deformations of adjoint orbits for semisimple Lie algebras and Lagrangian submanifolds,” Differential Geom. Appl., vol. 75, 2021, Art. ID 101719, doi: 10.1016/j.difgeo.2021.101719.
L. Bedulli and A. Gori, “Homogeneous Lagrangian submanifolds,” Comm. Anal. Geom., vol. 16, no. 3, pp. 591–615, 2008, doi: 10.4310/cag.2008.v16.n3.a5.
I. N. Bernšteĭn, I. M. Gel’fand, and S. I. Gel’fand, “Schubert cells, and the cohomology of the spaces G/P,” Uspehi Mat. Nauk, vol. 28, no. 3(171), pp. 3–26, 1973.
A. L. Besse, Einstein manifolds, ser. Classics in Mathematics. reprint of the 1987 edition. Springer-Verlag, Berlin, 2008,
L. Casian and R. J. Stanton, “Schubert cells and representation theory,” Invent. Math., vol. 137, no. 3, pp. 461–539, 1999, doi: 10.1007/s002220050334.
E. Gasparim, L. Grama, and L. A. B. San Martin, “Symplectic Lefschetz fibrations on adjoint orbits,” Forum Math., vol. 28, no. 5, pp. 967–979, 2016, doi: 10.1515/forum-2015-0039.
E. Gasparim, L. Grama, and L. A. B. San Martin, “Adjoint orbits of semi-simple Lie groups and Lagrangian submanifolds,” Proc. Edinb. Math. Soc. (2), vol. 60, no. 2, pp. 361–385, 2017, doi: 10.1017/S0013091516000286.
E. Gasparim and L. A. B. San Martin, “Morse functions and real Lagrangian thimbles on adjoint orbits,” J. Topol. Anal., vol. 17, no. 3, pp. 653–679, 2025, doi: 10.1142/S1793525323500395.
E. Gasparim, L. A. B. San Martin, and F. Valencia, “Infinitesimally tight Lagrangian orbits,” Math. Z., vol. 297, no. 3-4, pp. 1877–1898, 2021, doi: 10.1007/s00209-020-02583-9.
C. Gorodski and F. Podestà, “Tight Lagrangian homology spheres in compact homogeneous Kähler manifolds,” Israel J. Math., vol. 206, no. 1, pp. 413–429, 2015, doi: 10.1007/s11856-014-1145-5.
H. Iriyeh and T. Sakai, “Tight Lagrangian surfaces in S2 ×S2,” Geom. Dedicata, vol. 145, pp. 1–17, 2010.
N. Jacobson, Lie algebras. 1962 original. Dover Publications, Inc., New York, 1979, republication of the
Y.-G. Oh, “Tight Lagrangian submanifolds in CPn,” Math. Z., vol. 207, no. 3, pp. 409–416, 1991, doi: 10.1007/BF02571398.
Y.-G. Oh, “Volume minimization of Lagrangian submanifolds under Hamiltonian deformations,” Math. Z., vol. 212, no. 2, pp. 175–192, 1993, doi: 10.1007/BF02571651.
Y. Ohnita, “Geometry of R-spaces canonically embedded in Kähler C-spaces as Lagrangian submanifolds,” in Proceedings of the 22nd International Workshop on Differential Geometry of Submanifolds in Symmetric Spaces & the 17th RIRCM-OCAMI Joint Differential Geometry
Workshop, 2019, pp. 115–132.
L. Rabelo and L. A. B. San Martin, “Cellular homology of real flag manifolds,” Indag. Math. (N.S.), vol. 30, no. 5, pp. 745–772, 2019.
L. A. B. San Martin, Álgebras de Lie, 2nd ed. Campinas, SP, Brasil: Editora da Unicamp, 2010.
L. A. B. San Martin, Grupos de Lie. Campinas, SP, Brasil: Editora da Unicamp, 2016.
J.-P. Serre, Complex semisimple Lie algebras, ser. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2001, doi: 10.1007/978-3-642-56884-8.
P. B. Zwart and W. M. Boothby, “On compact, homogeneous symplectic manifolds,” Ann. Inst. Fourier (Grenoble), vol. 30, no. 1, pp. 129–157, 1980, doi: 10.5802/aif.778.
Similar Articles
- Ghislain R. Franssens, On the impossibility of the convolution of distributions , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Spencer Bloch, Helene Esnault, Congruences for the Number of Rational Points, Hodge Type and Motivic Conjectures for Fano Varieties , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- S. K. Yadav, S. K. Chaubey, D. L. Suthar, Some geometric properties of η− Ricci solitons and gradient Ricci solitons on (ð‘™ð‘ð‘ )ð‘›âˆ’manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Sushanta Kumar Mohanta, Coupled coincidence points for generalized (ψ, ϕ)-pair mappings in ordered cone metric spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Ilker Sahin, Mustafa Telci, A Common Fixed Point Theorem for Pairs of Mappings in Cone Metric Spaces , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Messaoud Bounkhel, Arc-wise Essentially Tangentially Regular Set-valued Mappings and their Applications to Nonconvex Sweeping Process , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- G. Palanichetty, G. Balasubramanian, On Some What Fuzzy Faintly Semicontinuous Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 J. Báez et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











