Pseudo-differential operators with smooth symbols on modulation spaces
-
Joachim Toft
joachim.toft@vxu.se
Downloads
Abstract
Let
be the modulation space with parameters p, q and weight function ω0. If ∂αa/ω ∈ L∞ for all α, then we prove that the pseudo-differential operator at(x, D) is continuous from
to
. More generally, if ð”… is a translation invariant BF-space, then we prove that at(x, D) is continuous from M(ω0ω)(ð”…) to M(ω0)(ð”…). We use these results to establish identifications between such spaces with different weights.
Keywords
Similar Articles
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Brian Weber, Keaton Naff, Canonical metrics and ambiKähler structures on 4-manifolds with \(U(2)\) symmetry , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Ricardo Castro Santis, Fernando Córdova-Lepe, Ana Belén Venegas, Biorreactor de fermentación con tasa estocástica de consumo , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Rachid Echarghaoui, Abdelouhab Hatimi, Mohamed Hatimi, A sub-elliptic system with strongly coupled critical terms and concave nonlinearities , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
You may also start an advanced similarity search for this article.











