Simple Fixed Point Theorems on Linear Continua
-
Jan Andres
andres@inf.upol.cz
-
Karel Pastor
pastor@inf.upol.cz
-
Pavla Snyrychov´a
snyrychp@inf.upol.cz
Downloads
Abstract
A simple fixed point theorem is formulated for multivalued maps with a connected graph on closed intervals of linear continua. These intervals either cover themselves or are concerned with self-maps. We discuss a question when the original map can possess a fixed point, provided the same assumptions are satisfied only for some of its iterate. We are particularly interested in a situation on noncompact connected linearly ordered spaces. Many illustrating examples are supplied.
Keywords
Similar Articles
- Muhammad N. Islam, Youssef N. Raffoul, Bounded Solutions and Periodic Solutions of Almost Linear Volterra Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Naoyuki Koike, Examples of a complex hyperpolar action without singular orbit , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- A. Aghajani, D. O'Regan, A. Shole Haghighi, Measure of noncompactness on Lp(RN) and applications , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Ilker Sahin, Mustafa Telci, A Common Fixed Point Theorem for Pairs of Mappings in Cone Metric Spaces , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Alexander Pankov, Discrete almost periodic operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Youssef N Raffoul, Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- S.K. Mohanta, Srikanta Mohanta, A common fixed point theorem in G-metric spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- B.E. Rhoades, A Fixed Point Theorem for Certain Operators , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











