A Disc-Cutting Theorem and Two-Dimensional Bifurcation of a Reaction-Diffusion System with Inclusions
-
Martin V¨ath
vaeth@mathematik.uni-wuerzburg.de
Downloads
Abstract
We provide a topological disc-cutting theorem which allows to prove that unilateral inclusions in a reaction-diffusion system of prey-predator type with a two-dimensional bifurcation parameter necessarily have a certain global branch of (global) bifurcation points.
Keywords
Similar Articles
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Shruti A. Kalloli, José Vanterler da C. Sousa, Kishor D. Kucche, On the \(\Phi\)-Hilfer iterative fractional differential equations , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Ricardo Castro Santis, Fernando Córdova-Lepe, Ana Belén Venegas, Biorreactor de fermentación con tasa estocástica de consumo , CUBO, A Mathematical Journal: In Press
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2008-12-01
How to Cite
[1]
M. V¨ath, “A Disc-Cutting Theorem and Two-Dimensional Bifurcation of a Reaction-Diffusion System with Inclusions”, CUBO, vol. 10, no. 4, pp. 85–100, Dec. 2008.
Issue
Section
Articles