On the Structure of Primitive ð“ƒ-Sum Groups
-
Eloisa Detomi
detomi@math.unipd.it
-
Andrea Lucchini
lucchini@math.unipd.it
Downloads
Abstract
For a finite group G, let ðœŽ(G) be least cardinality of a collection of proper subgroups whose set-theoretical union is all of G. We study the structure of groups G containing no normal non-trivial subgroup N such that ðœŽ(G/N) = ðœŽ(G).
Keywords
Similar Articles
- Shuichi Otake, Tony Shaska, Some remarks on the non-real roots of polynomials , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Fernando Levstein, Carolina Maldonado, Generalized quadrangles and subconstituent algebra , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2008-10-01
How to Cite
[1]
E. Detomi and A. Lucchini, “On the Structure of Primitive ð“ƒ-Sum Groups”, CUBO, vol. 10, no. 3, pp. 195–210, Oct. 2008.
Issue
Section
Articles