A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity
-
Masaru Ikehata
ikehata@math.sci.gunma-u.ac.jp
Downloads
Abstract
Previous applications of the enclosure method with a finite set of observation data to a mathematical model of electrical impedance tomography are based on the assumption that the conductivity of the background body is homogeneous and known. This paper considers the case when the conductivity is homogeneous and unknown. It is shown that, in two dimensions if the domain occupied by the background body is enclosed by an ellipse, then it is still possible to extract some information about the location of unknown cavities or inclusions embedded in the body without knowing the background conductivity provided the Fourier series expansion of the voltage on the boundary does not contain high frequency parts (band limited) and satisfies a non vanishing condition of a quantity involving the Fourier coefficients.
Keywords
Most read articles by the same author(s)
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
Similar Articles
- Xue Ping Wang, Semi-classical measures and the Helmholtz Equation , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Shruti A. Kalloli, José Vanterler da C. Sousa, Kishor D. Kucche, On the \(\Phi\)-Hilfer iterative fractional differential equations , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Stanislas Ouaro, Well-Posedness results for anisotropic nonlinear elliptic equations with variable exponent and 𘓹 -data , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Vediyappan Govindan, Choonkil Park, Sandra Pinelas, Themistocles M. Rassias, Hyers-Ulam stability of an additive-quadratic functional equation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- J. Henderson, S.K. Ntouyas, I.K. Purnaras, Positive Solutions for Systems of Three-point Nonlinear Boundary Value Problems with Deviating Arguments , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Aparajita Dasgupta, M.W. Wong, The semigroup and the inverse of the Laplacian on the Heisenberg group , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the Laplace transform and the convolution for more functions adjoined , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











