A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity
-
Masaru Ikehata
ikehata@math.sci.gunma-u.ac.jp
Downloads
Abstract
Previous applications of the enclosure method with a finite set of observation data to a mathematical model of electrical impedance tomography are based on the assumption that the conductivity of the background body is homogeneous and known. This paper considers the case when the conductivity is homogeneous and unknown. It is shown that, in two dimensions if the domain occupied by the background body is enclosed by an ellipse, then it is still possible to extract some information about the location of unknown cavities or inclusions embedded in the body without knowing the background conductivity provided the Fourier series expansion of the voltage on the boundary does not contain high frequency parts (band limited) and satisfies a non vanishing condition of a quantity involving the Fourier coefficients.
Keywords
Most read articles by the same author(s)
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
Similar Articles
- Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Martin V¨ath, A Disc-Cutting Theorem and Two-Dimensional Bifurcation of a Reaction-Diffusion System with Inclusions , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Carlos Cesar Aranda, Spacetime singularity, singular bounds and compactness for solutions of the Poisson‘s equation , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- William Dimbour, Jean-Claude Mado, S-asymptotically ω-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Balwant Singh Thakur, An iterative method for finite family of hemi contractions in Hilbert space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- l. M. Proudnikov, Construction of a stabilizing control and solution to a problem about the center and the focus for differential systems with a polynomial part on the right side , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Tetsuo Furumochi, Periodic Solutions of Periodic Difference Equations by Schauder‘s Theorem , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Qikeng Lu, Global Solutions of Yang-Mills Equation , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.











