A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity
-
Masaru Ikehata
ikehata@math.sci.gunma-u.ac.jp
Downloads
Abstract
Previous applications of the enclosure method with a finite set of observation data to a mathematical model of electrical impedance tomography are based on the assumption that the conductivity of the background body is homogeneous and known. This paper considers the case when the conductivity is homogeneous and unknown. It is shown that, in two dimensions if the domain occupied by the background body is enclosed by an ellipse, then it is still possible to extract some information about the location of unknown cavities or inclusions embedded in the body without knowing the background conductivity provided the Fourier series expansion of the voltage on the boundary does not contain high frequency parts (band limited) and satisfies a non vanishing condition of a quantity involving the Fourier coefficients.
Keywords
Most read articles by the same author(s)
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
Similar Articles
- l. M. Proudnikov, Construction of a stabilizing control and solution to a problem about the center and the focus for differential systems with a polynomial part on the right side , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Djalal Boucenna, Abdellatif Ben Makhlouf, Mohamed Ali Hammami, On Katugampola fractional order derivatives and Darboux problem for differential equations , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Abderrahim Guerfi, Abdelouaheb Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Gen-Qiang Wang, Sui Sun Cheng, Oscillation of second order differential equation with piecewise constant argument , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- René Erlín Castillo, Héctor Camilo Chaparro, Julio César Ramos-Fernández, \(L_p\)-boundedness of the Laplace transform , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Alexander A. Kovalevsky, Francesco Nicolosi, On a condition for the nonexistence of \(W\)-solutions of nonlinear high-order equations with L\(^1\) -data , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Elena Cordero, Davide Zucco, Strichartz estimates for the Schrödinger equation , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- M. H. Saleh, S. M. Amer, M. H. Ahmed, The method of Kantorovich majorants to nonlinear singular integral equations with Hilbert Kernel , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Peter Danchev, Notes on the Isomorphism and Splitting Problems for Commutative Modular Group Algebras , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
<< < 9 10 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.











