A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity
-
Masaru Ikehata
ikehata@math.sci.gunma-u.ac.jp
Downloads
Abstract
Previous applications of the enclosure method with a finite set of observation data to a mathematical model of electrical impedance tomography are based on the assumption that the conductivity of the background body is homogeneous and known. This paper considers the case when the conductivity is homogeneous and unknown. It is shown that, in two dimensions if the domain occupied by the background body is enclosed by an ellipse, then it is still possible to extract some information about the location of unknown cavities or inclusions embedded in the body without knowing the background conductivity provided the Fourier series expansion of the voltage on the boundary does not contain high frequency parts (band limited) and satisfies a non vanishing condition of a quantity involving the Fourier coefficients.
Keywords
Most read articles by the same author(s)
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
Similar Articles
- Muhammad Aslam Noor, Khalida Inayat Noor, Proximal-Resolvent Methods for Mixed Variational Inequalities , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- George A. Anastassiou, Poincar´e Type Inequalities for Linear Differential Operators , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Vadim N. Biktashev, Envelope equations for modulated non-conservative waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Wolfgang Spr¨ossig, Quaternionic analysis and Maxwell‘s equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- A. Rodkina, On Asymptotic Stability of Nonlinear Stochastic Systems with Delay , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- M.I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Aboudramane Guiro, Idrissa Ibrango, Existence of solutions for discrete boundary value problems with second order dependence on parameters , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Weihui Wang, Zuodong Yang, Nonnegative solutions of quasilinear elliptic problems with sublinear indefinite nonlinearity , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Cong He, Jingchun Chen, Vlasov-Poisson equation in weighted Sobolev space \(W^{m, p}(w)\) , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
<< < 12 13 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.










