A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity
-
Masaru Ikehata
ikehata@math.sci.gunma-u.ac.jp
Downloads
Abstract
Previous applications of the enclosure method with a finite set of observation data to a mathematical model of electrical impedance tomography are based on the assumption that the conductivity of the background body is homogeneous and known. This paper considers the case when the conductivity is homogeneous and unknown. It is shown that, in two dimensions if the domain occupied by the background body is enclosed by an ellipse, then it is still possible to extract some information about the location of unknown cavities or inclusions embedded in the body without knowing the background conductivity provided the Fourier series expansion of the voltage on the boundary does not contain high frequency parts (band limited) and satisfies a non vanishing condition of a quantity involving the Fourier coefficients.
Keywords
Most read articles by the same author(s)
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
Similar Articles
- Tetsuo Furumochi, Periodic Solutions of Periodic Difference Equations by Schauder‘s Theorem , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Leigh C. Becker, T. A. Burton, Jensen's Inequality and Liapunov's Direct Method , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Ravi P. Agarwal, Triple solutions of constant sign for a system of fredholm integral equations , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Jerome Yen, Ferenc Szidarovszky, Dynamic Negotiations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- F. Cardoso, G. Vodev, Semi-Classical Dispersive Estimates for the Wave and Schr¨odinger Equations with a Potential in Dimensions 𓃠≥ 4 , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- l. M. Proudnikov, Construction of a stabilizing control and solution to a problem about the center and the focus for differential systems with a polynomial part on the right side , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
<< < 8 9 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.











