Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields
-
Georgi Raikov
graykov@uchile.cl
Downloads
Abstract
We consider the three-dimensional Schr¨odinger operator with constant magnetic field, perturbed by an appropriate short-range electric potential, and investigate various asymptotic properties of the corresponding spectral shift function (SSF). First, we analyse the singularities of the SSF at the Landau levels. Further, we study the strong magnetic field asymptotic behaviour of the SSF; here we distinguish between the asymptotics far from the Landau levels, and near a given Landau level. Finally, we obtain a Weyl-type formula describing the high energy behaviour of the SSF.
This is a survey article on recent published results obtained by the author jointly with Vincent Bruneau, Claudio Fern´andez, and Alexander Pushnitski. A shorter version will appear in the Proceedings of the Conference QMath9, Giens, France, September 2004.
Keywords
Most read articles by the same author(s)
- Jean-François Bony, Vincent Bruneau, Philippe Briet, Georgi Raikov, Resonances and SSF Singularities for Magnetic Schrödinger Operators , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
Similar Articles
- Bruno Costa, Spectral Methods for Partial Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Abhijit Banerjee, Arpita Kundu, On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Paul W. Eloe, Positive Operators and Maximum Principles for Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- A. Thiago Bernardino, Remarks on cotype and absolutely summing multilinear operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Yaroslav Kurylev, Matti Lassas, Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Ryuichi Ashino, Michihiro Nagase, Rémi Vaillancourt, Pseudodifferential operators in ð¿áµ–(â„â¿) , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- George A. Anastassiou, Poincar´e Type Inequalities for Linear Differential Operators , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Laurent Amour, Jérémy Faupin, The confined hydrogenoid ion in non-relativistic quantum electrodynamics , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.










