On topological symplectic dynamical systems
-
S. Tchuiaga
tchuiagas@gmail.com
-
M. Koivogui
moussa.koivogui@esatic.ci
-
F. Balibuno
balibuno.lugando@imsp-uac.org
-
V. Mbazumutima
mbazumutima.vianney@aims-cameroon.org
Downloads
DOI:
https://doi.org/10.4067/S0719-06462017000200049Abstract
This paper contributes to the study of topological symplectic dynamical systems, and hence to the extension of smooth symplectic dynamical systems. Using the positivity result of symplectic displacement energy [4], we prove that any generator of a strong symplectic isotopy uniquely determine the latter. This yields a symplectic analogue of a result proved by Oh [12], and the converse of the main theorem found in [6]. Also, tools for defining and for studying the topological symplectic dynamical systems are provided: We construct a right-invariant metric on the group of strong symplectic homeomorphisms whose restriction to the group of all Hamiltonian homeomorphism is equivalent to Oh‘s metric [12], define the topological analogues of the usual symplectic displacement energy for non-empty open sets, and we prove that the latter is positive. Several open conjectures are elaborated.
Keywords
Similar Articles
- Toka Diagana, Pseudo Almost Periodic Solutions to a Neutral Delay Integral Equation , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Vediyappan Govindan, Choonkil Park, Sandra Pinelas, Themistocles M. Rassias, Hyers-Ulam stability of an additive-quadratic functional equation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Dhruwa Narain, Sunil Yadav, On Weak concircular Symmetries of Lorentzian Concircular Structure Manifolds , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Ciprian G. Gal, Sorin G. Gal, On Fokker-Planck and linearized Korteweg-de Vries type equations with complex spatial variables , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- George A. Anastassiou, Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- S. S. Dragomir, Some integral inequalities related to Wirtinger's result for \(p\)-norms , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- M. Caldas, E. Hatir, S. Jafari, T. Noiri, A New Kupka Type Continuity, λ-Compactness and Multifunctions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Valeriu Popa, Weakly Picard pairs of multifunctions , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.