Global Solutions of Yang-Mills Equation
-
Qikeng Lu
luqik@public.bta.net.cn
Downloads
Abstract
Global and explicit solutions of Yang-Mills equations are given in the Minkowski space, conformal space and the de-Sitter spaces of arbitrary cosmology constants. The method used is concluded into a general theorem.
Keywords
Similar Articles
- Cong He, Jingchun Chen, Vlasov-Poisson equation in weighted Sobolev space \(W^{m, p}(w)\) , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Khalil Ezzinbi, Valerie Nelson, Gaston N‘Gu´er´ekata, ð¶â½â¿â¾-Almost Automorphic Solutions of Some Nonautonomous Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Rinko Shinzato, Wataru Takahashi, A Strong Convergence Theorem by a New Hybrid Method for an Equilibrium Problem with Nonlinear Mappings in a Hilbert Space , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Fang Li, Zuodong Yang, Existence of blow-up solutions for quasilinear elliptic equation with nonlinear gradient term. , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- George Venkov, Small Data Global Existence and Scattering for the Mass-Critical Nonlinear Schrödinger Equation with Power Convolution in ℳ , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Hamed M. Obiedat, A Topological Characterization of the Beurling-Björck Space ð”–𜔠Using the Short-Time Fourier Transform , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Théodore K. Boni, Diabaté Nabongo, Quenching for discretizations of a nonlocal parabolic problem with Neumann boundary condition , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2006-08-01
How to Cite
[1]
Q. Lu, “Global Solutions of Yang-Mills Equation”, CUBO, vol. 8, no. 2, pp. 47–51, Aug. 2006.
Issue
Section
Articles











