Moving a Robot Arm: An interesting application of the Direct method of Lyapunov
-
Jito Vanualailai
vanualailai@usp.ac.fj
-
Bibhya Sharma
sharma_b@usp.ac.fj
Downloads
Abstract
In this paper, we explore the fundamentals of an emerging technique applicable, at least, in principle, to robot navigation, or motion planning. Termed the second method of Lyapunov, it is currently a powerful mathematical technique used to study the qualitative behaviour of natural or man-made systems that could be modeled, in an approximate way, by differential equations. We review the Lyapunov method and then in a simple and direct way, we use it to propose a theoretical technique to control the motion of a planar arm in a constrained environment. The controllers are mathematical entities which are nonlinear in nature. Computer simulations are used to illustrate the effectiveness of the proposed controllers.
Keywords
Similar Articles
- Paolo D‘alessandro, Closure of pointed cones and maximum principle in Hilbert spaces , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Junwei Liu, Chuanyi Zhang, Existence and stability of almost periodic solutions to impulsive stochastic differential equations , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Valery A. Gaiko, Limit Cycles of Li´enard-Type Dynamical Systems , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Akio Matsumoto, Ferenc Szidarovszky, An Elementary Study of a Class of Dynamic Systems with Single Time Delay , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Djalal Boucenna, Abdellatif Ben Makhlouf, Mohamed Ali Hammami, On Katugampola fractional order derivatives and Darboux problem for differential equations , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Youssef N. Raffoul, Boundedness and stability in nonlinear systems of differential equations using a modified variation of parameters formula , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Bapurao C. Dhage, John R. Graef, Shyam B. Dhage, Existence, stability and global attractivity results for nonlinear Riemann-Liouville fractional differential equations , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Fujisaki Masatoshi, Nonlinear semigroup associated with maximizing operator and large deviation , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.