Explicit Runge-Kutta methods for the numerical solution of initial value problems
-
Charalampos Tsitouras
tsitoura@math.ntua.gr
Downloads
Abstract
Explicit Runge-Kutta pairs are the most popular methods for integrating non-stiff initial value problems. Basic theory concerning its occuracy, stability and other properties is presented here as long as with implementation issues. Finally a new pair of orders 5(4) suitable for oscillatory problems is presented and tested.
Keywords
Similar Articles
- Xu You, Rational approximation of the finite sum of some sequences , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Ricardo Castro Santis, Fernando Córdova-Lepe, Ana Belén Venegas, Biorreactor de fermentación con tasa estocástica de consumo , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Bach Do, G. Stacey Staples, Zeros of cubic polynomials in zeon algebra , CUBO, A Mathematical Journal: In Press
- Asa Ashley, Ferhan M. Atıcı, Samuel Chang, A note on constructing sine and cosine functions in discrete fractional calculus , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2002-06-01
How to Cite
[1]
C. Tsitouras, “Explicit Runge-Kutta methods for the numerical solution of initial value problems”, CUBO, vol. 4, no. 2, pp. 177–193, Jun. 2002.
Issue
Section
Articles











