New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations
-
Svetlin G. Georgiev
svetlingeorgiev1@gmail.com
-
Khaled Zennir
khaledzennir2@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000200023Abstract
In this article, we consider a class of nonlinear parabolic equations. We use an integral representation combined with a sort of fixed point theorem to prove the existence of classical solutions for the initial value problem (1.1), (1.2). We also obtain a result on continuous dependence on the initial data. We propose a new approach for investigation for existence of classical solutions of some classes nonlinear parabolic equations.
Keywords
Similar Articles
- Victor P. Palamodov, One century of Minkowski's paper: reconstruction from integral geometry data , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Michael J. Mezzino, Numerical Solutions of Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Charalampos Tsitouras, Explicit Runge-Kutta methods for the numerical solution of initial value problems , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Daniel J. Curtin, The Solution of the Cubic Equation: Renaissance Genius and Strife , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Nejc Sirovnik, On certain functional equation in semiprime rings and standard operator algebras , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Claudio Vidal, Gonçalo Renildo, Homographic solutions in the ð‘›-body problem , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Manuel Pinto, Some Problems in Functional Differential Equations , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
<< < 10 11 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.










