New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations
-
Svetlin G. Georgiev
svetlingeorgiev1@gmail.com
-
Khaled Zennir
khaledzennir2@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000200023Abstract
In this article, we consider a class of nonlinear parabolic equations. We use an integral representation combined with a sort of fixed point theorem to prove the existence of classical solutions for the initial value problem (1.1), (1.2). We also obtain a result on continuous dependence on the initial data. We propose a new approach for investigation for existence of classical solutions of some classes nonlinear parabolic equations.
Keywords
Similar Articles
- Michael Holm, Sum and Difference Compositions in Discrete Fractional Calculus , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Saharon Shelah, On λ strong homogeneity existence for cofinality logic , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Peter Topalov, Geodesically compatible metrics. Existence of commutative conservation laws , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- George A. Anastassiou, Poincar´e Type Inequalities for Linear Differential Operators , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- F. Cardoso, G. Vodev, Semi-Classical Dispersive Estimates for the Wave and Schr¨odinger Equations with a Potential in Dimensions 𓃠≥ 4 , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- L. K. Kikina, I.P. Stavroulakis, A Survey on the Oscillation of Solutions of First Order Delay Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Daniel J. Curtin, The Solution of the Cubic Equation: Renaissance Genius and Strife , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.